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These notes provide an introduction to ground-state density-functional theory (DFT) of
electronic systems. For more intensive coverages of the subject, see e.g. Refs. [1–5].

1 Basic density-functional theory

1.1 The many-body problem

We consider a N -electron system (atom, molecule, or solid) in the Born-Oppenheimer and
non-relativistic approximations. The electronic Hamiltonian in the position representation is, in
atomic units,

H(r1, r2, ..., rN ) = −1

2

N
∑

i=1

∇2
ri
+

1

2

N
∑

i=1

N
∑

j=1
i 6=j

1

|ri − rj |
+

N
∑

i=1

vne(ri), (1.1)

where vne(ri) = −∑α Zα/|ri −Rα| is the nuclei-electron interaction (Rα and Zα are the posi-
tions and charges of the nuclei). The stationary electronic states are determined by the time-
independent Schrödinger equation

H(r1, r2, ..., rN )Ψ(x1,x2, ...,xN ) = EΨ(x1,x2, ...,xN ), (1.2)

where Ψ(x1,x2, ...,xN ) is a wave function written with space-spin coordinates xi = (ri, σi) (with
ri ∈ R

3 and σi =↑ or ↓) which is antisymmetric with respect to the exchange of two coordinates,
and E is the associated energy.

Using Dirac notations, the Schrödinger equation (1.2) can be rewritten in a representation-
independent formalism

Ĥ|Ψ〉 = E|Ψ〉, (1.3)

where the Hamiltonian is formally written as

Ĥ = T̂ + Ŵee + V̂ne, (1.4)

with the kinetic-energy operator T̂ , the electron-electron interaction operator Ŵee, and the
nuclei-electron interaction operator V̂ne. These operators can be conveniently expressed in second
quantization (see Appendix A).

The quantity of primary interest is the ground-state energy E0. The variational theorem
establishes that E0 can be obtained by the following minimization

E0 = min
Ψ

〈Ψ|Ĥ|Ψ〉, (1.5)

where the search is over all N -electron antisymmetric wave functions Ψ, normalized to unity
〈Ψ|Ψ〉 = 1. DFT is based on a reformulation of the variational theorem in terms of the one-
electron density defined as1

n(r) = N

∫

· · ·
∫

|Ψ(x,x2, ...,xN )|2 dσdx2...dxN , (1.6)

which is normalized to the electron number,
∫

n(r)dr = N .

1In Eq. (1.6), an integration over a spin coordinate σ just means a sum over the two values σ =↑ and σ =↓.
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1.2 The universal density functional

1.2.1 The Hohenberg-Kohn theorem

Consider an electronic system with an arbitrary external local potential v(r) in place of
vne(r). A corresponding ground-state wave function Ψ (there can be several of them if the
ground state is degenerate) can be obtained by solving the Schrödinger equation, from which
the associated ground-state density n(r) can be deduced. Therefore, one has a mapping from
the potential v(r) to the considered ground-state density n(r)

v(r) −−−−−−→ n(r). (1.7)

In 1964, Hohenberg and Kohn [6] showed that this mapping can be inverted, i.e. the ground-state
density n(r) determines the potential v(r) up to an arbitrary additive constant

n(r) −−−−−−−−−−→
Hohenberg-Kohn

v(r) + const. (1.8)

Proof: The two-step proof by contradiction proceeds as follows (see, e.g., Ref. [2]).
We consider two local potentials v1(r) and v2(r) differing by more than an additive constant,
v1(r) 6= v2(r) + const, and we note E1 and E2 the ground-state energies of the Hamiltonians
Ĥ1 = T̂ + Ŵee + V̂1 and Ĥ2 = T̂ + Ŵee + V̂2, respectively.
(1) Assume that Ĥ1 and Ĥ2 have the same ground-state wave function Ψ, i.e. Ĥ1|Ψ〉 = E1|Ψ〉
and Ĥ2|Ψ〉 = E2|Ψ〉. Then, subtracting these two equations gives

(V̂1 − V̂2)|Ψ〉 = (E1 − E2)|Ψ〉, (1.9)

or, in position representation,

N
∑

i=1

[v1(ri)− v2(ri)]Ψ(x1,x2, ...,xN ) = (E1 − E2)Ψ(x1,x2, ...,xN ), (1.10)

which implies v1(r) − v2(r) = const, in contradiction with the initial hypothesis. Note that, to
eliminate Ψ in Eq. (1.10), it was assumed that Ψ(x1,x2, ...,xN ) 6= 0 for all spatial coordinates
(r1, r2, ..., rN ) and at least one fixed set of spin coordinates (σ1, σ2, ..., σN ). This in fact true
“almost everywhere” for “reasonably well behaved” potentials. In this case, we thus conclude
that two local potentials differing by more than an additive constant cannot share the same
ground-state wave function.
(2) Let then Ψ1 and Ψ2 be (necessarily different) ground-state wave functions of Ĥ1 and Ĥ2, re-
spectively, and assume that Ψ1 and Ψ2 have the same ground-state density n(r). The variational
theorem leads to the following inequality

E1 = 〈Ψ1|Ĥ1|Ψ1〉 < 〈Ψ2|Ĥ1|Ψ2〉 = 〈Ψ2|Ĥ2+ V̂1− V̂2|Ψ2〉 = E2+

∫

[v1(r)−v2(r)] n(r)dr, (1.11)

where the strict inequality comes from the fact that Ψ2 cannot be a ground-state wave function
of Ĥ1, as shown in the first step of the proof. Symmetrically, by exchanging the role of systems
1 and 2, we have the strict inequality

E2 < E1 +

∫

[v2(r)− v1(r)] n(r)dr. (1.12)
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Adding Eqs. (1.11) and (1.12) gives the inconsistent result

E1 + E2 < E1 + E2, (1.13)

which finally leads to the conclusion that there cannot exist two local potentials differing by
more than an additive constant which have the same ground-state density. Note that this proof
does not assume non-degenerate ground states (contrary to the original Hohenberg-Kohn proof).
�

So, the ground-state density n(r) determines the potential v(r), which in turn determines the
Hamiltonian, and thus everything about the many-body problem. In other words, the potential
v is a unique (up to an additive constant) functional of the ground-state density n, and all other
properties as well. The ground-state wave function Ψ for the potential v(r) is itself a functional
of n, denoted by Ψ[n], which was exploited by Hohenberg and Kohn to define the universal (i.e.,
independent from the external potential) density functional

F [n] = 〈Ψ[n]|T̂ + Ŵee|Ψ[n]〉, (1.14)

which can be used to define the total electronic energy functional

E[n] = F [n] +

∫

vne(r)n(r)dr, (1.15)

for the specific external potential vne(r) of the system considered. Note that, for degenerate
ground states, Ψ[n] is not unique but stands for any degenerate ground-state wave function.
However, all Ψ[n] give the same F [n], which is thus a unique functional of n.

Hohenberg and Kohn further showed that the density functional E[n] satisfies a variational
property: the ground-state energy E0 of the system considered is obtained by minimizing this
functional with respect to N -electron densities n that are ground-state densities associated with
some local potential (referred to as v-representable densities)

E0 = min
n

{

F [n] +

∫

vne(r)n(r)dr

}

, (1.16)

the minimum being reached for a ground-state density n0(r) corresponding to the potential
vne(r).

The existence of a mapping from a ground-state density to a local potential, the existence
of the universal density functional, and the variational property with respect to the density
constitutes the Hohenberg-Kohn theorem.

Exercise 1 : For the special case of Coulombic potentials vne(r) there is a simple argument
due to E. Bright Wilson showing that the ground-state density n0(r) fully determines vne(r).
Can you find it yourself?

Exercise 2 : Prove the variational property [Eq. (1.16)] of the density functional E[n].
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1.2.2 Levy’s constrained-search formulation

In 1979 Levy [7, 8], and later Lieb [9], proposed to redefine the universal density functional
F [n] using a constrained-search formulation

F [n] = min
Ψ→n

〈Ψ|T̂ + Ŵee|Ψ〉 = 〈Ψ[n]|T̂ + Ŵee|Ψ[n]〉, (1.17)

where Ψ → nmeans that the minimization is done over normalized antisymmetric wave functions
Ψ which yield the fixed density n [via Eq. (1.6)]. For a given density n, the minimizing wave
function is denoted by Ψ[n] (possibly non unique in case of degeneracy). This definition of F [n]
is more straightforward than the Hohenberg-Kohn definition. It does not require the existence of
a local potential associated to the density: it is defined on the larger set of N -electron densities
coming from an antisymmetric wave function (referred to as N -representable densities).

The variational property of the total electronic energy functional can easily be demonstrated
using the constrained-search formulation. One starts from the usual variational theorem and
decomposes the minimization over Ψ in two steps: a constrained minimization over Ψ giving a
fixed density n, followed by a minimization over n,

E0 = min
Ψ

〈Ψ|T̂ + Ŵee + V̂ne|Ψ〉

= min
n

min
Ψ→n

〈Ψ|T̂ + Ŵee + V̂ne|Ψ〉

= min
n

{

min
Ψ→n

〈Ψ|T̂ + Ŵee|Ψ〉+
∫

vne(r)n(r)dr

}

= min
n

{

F [n] +

∫

vne(r)n(r)dr

}

, (1.18)

and again the minimum is reached for a ground-state density n0(r) corresponding to the potential
vne(r).

The ground-state energy and density can then be in principle obtained by minimizing over
the density n(r), i.e. a simple function of 3 variables, which is a tremendous simplification
compared to the minimization over a complicated many-body wave function Ψ. However, the
explicit expression of F [n] in terms of the density is not known, and the direct approximations
for F [n] that have been tried so far turn out not to be accurate enough, especially for the kinetic
energy part T [n] included in F [n]

F [n] = T [n] +Wee[n], (1.19)

where T [n] = 〈Ψ[n]|T̂ |Ψ[n]〉 and Wee[n] = 〈Ψ[n]|Ŵee|Ψ[n]〉.

1.3 The Kohn-Sham method

1.3.1 Decomposition of the universal functional

Faced with the difficulty of approximating directly F [n], Kohn and Sham (KS) [10] proposed
to decompose F [n] as

F [n] = Ts[n] + EHxc[n], (1.20)

where Ts[n] is the non-interacting kinetic-energy functional which can be defined with a constrained-
search formulation

Ts[n] = min
Φ→n

〈Φ|T̂ |Φ〉 = 〈Φ[n]|T̂ |Φ[n]〉, (1.21)
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where Φ → n means that the minimization is done over normalized single-determinant wave
functions Φ which yield the fixed density n. For a given density n, the (non necessarily unique)
minimizing single-determinant wave function is called the KS wave function and is denoted by
Φ[n]. The remaining functional EHxc[n] in Eq. (1.20) is called the Hartree-exchange-correlation
functional. The idea of the KS method is then to use the exact expression of Ts[n] by reformu-
lating the variational property of F [n] in terms of single-determinant wave functions Φ

E0 =min
n

{

F [n] +

∫

vne(r)n(r)dr

}

,

=min
n

{

min
Φ→n

〈Φ|T̂ |Φ〉+ EHxc[n] +

∫

vne(r)n(r)dr

}

=min
n

min
Φ→n

{

〈Φ|T̂ + V̂ne|Φ〉+ EHxc[nΦ]
}

=min
Φ

{

〈Φ|T̂ + V̂ne|Φ〉+ EHxc[nΦ]
}

, (1.22)

the minimizing single-determinant KS wave function giving the exact ground-state density n0(r).
Thus, the exact ground-state energy and density can in principle be obtained by minimizing over
single-determinant wave functions only. Even though a wave function has been reintroduced
compared to Eq. (1.18), it is only a single-determinant wave function Φ and therefore it still
represents a tremendous simplification over the usual variational theorem involving a multi-
determinant wave function Ψ. The advantage of Eq. (1.22) over Eq. (1.18) is that a major part
of the kinetic energy can be treated explicitly with the single-determinant wave function Φ, and
only EHxc[n] needs to be approximated as a functional of the density.

In practice, EHxc[n] is written as

EHxc[n] = EH[n] + Exc[n], (1.23)

where EH[n] is the Hartree energy functional

EH[n] =
1

2

∫∫

n(r1)n(r2)

|r1 − r2|
dr1dr2, (1.24)

representing the classical electrostatic repulsion energy for the charge distribution n(r), and
Exc[n] is the exchange-correlation energy functional that remains to approximate. This func-
tional is often decomposed as

Exc[n] = Ex[n] + Ec[n], (1.25)

where Ex[n] is the exchange energy functional

Ex[n] = 〈Φ[n]|Ŵee|Φ[n]〉 − EH[n], (1.26)

and Ec[n] is the correlation energy functional

Ec[n] = 〈Ψ[n]|T̂ + Ŵee|Ψ[n]〉 − 〈Φ[n]|T̂ + Ŵee|Φ[n]〉 = Tc[n] + Uc[n], (1.27)

which contains a kinetic contribution Tc[n] = 〈Ψ[n]|T̂ |Ψ[n]〉 − 〈Φ[n]|T̂ |Φ[n]〉 and a potential
contribution Uc[n] = 〈Ψ[n]|Ŵee|Ψ[n]〉 − 〈Φ[n]|Ŵee|Φ[n]〉.
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1.3.2 The Kohn-Sham equations

The single-determinant wave function Φ is constructed from a set of N orthonormal occupied
spin-orbitals {ψi(x)}i=1,...,N . To enforce Ŝz symmetry, each spin-orbital is factorized as ψi(x) =
φi(r)χσi

(σ) where φi(r) is a spatial orbital and χσi
(σ) = δσi,σ is a spin function (σi is the spin of

the spin-orbital i). Alternatively, when this is convenient, we will sometimes reindex the spatial
orbitals, {φi(r)} → {φiσ(r)}, including explicitly the spin σ in the index. Writing the total
electronic energy in Eq. (1.22) in terms of spin-orbitals and integrating over the spin variables,
we obtain

E[{φi}] =
N
∑

i=1

∫

φ∗i (r)
(

−1

2
∇2 + vne(r)

)

φi(r)dr+ EHxc[n], (1.28)

where the density is expressed in terms of the orbitals as

n(r) =
N
∑

i=1

|φi(r)|2 . (1.29)

The minimization over Φ can then be recast into a minimization of E[{φi}] with respect to the
spatial orbitals φi(r) with the constraint of keeping the orbitals orthonormalized. Using the
method of Lagrange multipliers, we introduce the following Lagrangian

L[{φi}] = E[{φi}]−
N
∑

i=1

εi

(
∫

φ∗i (r)φi(r)dr− 1

)

, (1.30)

where εi is the Lagrange multiplier associated to the normalization condition of φi(r)
2. The

Lagrangian should then be stationary with respect to variations of the orbitals φi(r)
3

δL
δφ∗i (r)

= 0, (1.31)

where δL/δφ∗i (r) is the functional derivative of L with respect to φ∗i (r). Calculating this func-
tional derivative gives (see Appendix B for an introduction to functional calculus)

(

−1

2
∇2 + vne(r)

)

φi(r) +
δEHxc[n]

δφ∗i (r)
= εiφi(r), (1.32)

where the term δEHxc[n]/δφ
∗
i (r) can be expressed as, using the chain rule,

δEHxc[n]

δφ∗i (r)
=

∫

δEHxc[n]

δn(r′)
δn(r′)
δφ∗i (r)

dr′. (1.33)

Noting that δn(r′)/δφ∗i (r) = φi(r)δ(r− r′) [from Eq. (1.29)], and defining the Hartree-exchange-
correlation potential vHxc(r) as the functional derivative of EHxc[n] with respect to n(r)

vHxc(r) =
δEHxc[n]

δn(r)
, (1.34)

2It turns out that it is not necessary to include the orthogonalization conditions
∫

φ∗
i (r)φj(r)dr = 0 for i 6= j

in Eq. (1.30). Indeed, we will find that the minimizing orbitals φi(r) are eigenfunctions of a self-adjoint operator,
which implies that we can always find an orthogonal set of orbitals

3Here, the orbitals are assumed to take complex values, so that φi(r) and φ∗
i (r) can be taken as independent

functions. We then write the stationary equation for variations with respect to φ∗
i (r) only, the second stationary

equation for variations with respect to φi(r) is just the complex conjugate of the first one.
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which is itself a functional of the density, we then arrive at the KS equations

(

−1

2
∇2 + vne(r) + vHxc(r)

)

φi(r) = εiφi(r). (1.35)

The orbitals satisfying Eq. (1.35) are called the KS orbitals. They are the eigenfunctions of the
KS one-electron Hamiltonian

hs(r) = −1

2
∇2 + vs(r), (1.36)

where

vs(r) = vne(r) + vHxc(r), (1.37)

is the KS potential, and εi are then the KS orbital energies. Note that Eq. (1.35) constitutes a
set of coupled self-consistent equations since the potential vHxc(r) depends on all the occupied
orbitals {φi(r)}i=1,...,N through the density [Eq. (1.29)]. At convergence, the orbitals obtained by
solving Eq. (1.35) must be the same as the orbitals used to construct vHxc(r). The operator hs(r)
defines the KS system which is a system of N non-interacting electrons in an effective external
potential vs(r) ensuring that its ground-state density n(r) is the same as the exact ground-state
density n0(r) of the physical system of N interacting electrons. The exact ground-state energy
E0 is then obtained by injecting the KS orbitals in Eq. (1.28). Note that Eq. (1.35) also permits
to define virtual KS orbitals {φa(r)}a=N+1,...,∞ which together with the occupied KS orbitals
form a complete basis since hs(r) is a self-adjoint operator.

Note that the existence of the functional derivative in Eq. (1.34) has been assumed. This is
in fact not true for all densities but only for vs-representable densities, i.e. densities that are the
ground-state densities of a non-interacting system with some local potential. Also, note that
the KS potential in Eq. (1.37) is defined only up to an additive constant. For finite systems, we
choose the constant so that the potential vanishes at infinity, vs(∞) = 0.

Following the decomposition of EHxc[n] in Eq. (1.23), the potential vHxc(r) is decomposed as

vHxc(r) = vH(r) + vxc(r), (1.38)

where vH(r) = δEH[n]/δn(r) is the Hartree potential and vxc(r) = δExc[n]/δn(r) is the exchange-
correlation potential. Likewise, following the decomposition of Exc[n] in Eq. (1.25), the potential
vxc(r) can be decomposed as

vxc(r) = vx(r) + vc(r), (1.39)

where vx(r) = δEx[n]/δn(r) is the exchange potential and vc(r) = δEc[n]/δn(r) is the correlation
potential. Thus, the Kohn-Sham equations are similar to the Hartree-Fock equations, with the
difference that they involve a local exchange potential vx(r) instead of a nonlocal one, and an
additional correlation potential.

Exercise 3 : Show that the expression of the Hartree potential is

vH(r) =

∫

n(r′)
|r− r′|dr

′. (1.40)

9



1.3.3 Practical calculations in an atomic basis

In practical calculations for molecular systems, we usually work in a basis of M atomic
functions {χν(r)}, e.g. Gaussian-type basis functions centered on the nuclei. We then expand
the orbitals as

φi(r) =
M
∑

ν=1

cνi χν(r), (1.41)

and thus calculating the orbitals amounts to calculating the orbital coefficients cνi. Inserting
Eq. (1.41) into the KS equations

hs(r)φi(r) = εiφi(r), (1.42)

multiplying on the left by χ∗
µ(r) and integrating over r, we arrive at

M
∑

ν=1

Fµν cνi = εi

M
∑

ν=1

Sµν cνi, (1.43)

where Fµν =
∫

χ∗
µ(r)hs(r)χν(r)dr are the elements of the KS Fock matrix and Sµν =

∫

χ∗
µ(r)χν(r)dr

are the elements of the overlap matrix of the basis functions.

The Fock matrix is calculated as

Fµν = hµν + Jµν + Vxc,µν , (1.44)

where hµν are the one-electron integrals

hµν =

∫

χ∗
µ(r)

(

−1

2
∇2 + vne(r)

)

χν(r)dr, (1.45)

Jµν is the Hartree potential contribution

Jµν =

∫

χ∗
µ(r)vH(r)χν(r)dr =

M
∑

λ=1

M
∑

γ=1

Pγλ(χµχν |χλχγ), (1.46)

with the density matrix

Pγλ =

N
∑

i=1

cγic
∗
λi, (1.47)

and the two-electron integrals (in chemists’ notation)

(χµχν |χλχγ) =

∫∫

χ∗
µ(r1)χν(r1)χ

∗
λ(r2)χγ(r2)

|r1 − r2|
dr1dr2, (1.48)

and Vxc,µν is the exchange-correlation potential contribution

Vxc,µν =

∫

χ∗
µ(r)vxc(r)χν(r)dr. (1.49)

In Eq. (1.49), the exchange-correlation potential vxc(r) is evaluated at the density calculated as

n(r) =

M
∑

γ=1

M
∑

λ=1

Pγλχγ(r)χ
∗
λ(r). (1.50)
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Exercise 4 : Check Eq. (1.50) and prove the second equality in Eq. (1.46).

Eq. (1.43) is a self-consistent generalized eigenvalue equation that must be solved iteratively
for finding the KS orbital coefficients and KS orbital energies. The converged density matrix
can then be used to obtain the total electronic energy

E =
M
∑

µ=1

M
∑

ν=1

Pνµhµν +
1

2

M
∑

µ=1

M
∑

ν=1

PνµJµν + Exc, (1.51)

where Exc is calculated with the density in Eq. (1.50).

In the simplest approximations (see Section 3), the exchange-correlation energy functional
has a local form

Elocal
xc =

∫

f(n(r))dr, (1.52)

where f(n(r)) has a complicated nonlinear dependence on the density n(r). For example, in the
local-density approximation (LDA) (see Section 3.1), the exchange energy is

ELDA
x = cx

∫

n(r)4/3dr, (1.53)

where cx is a constant, and the exchange potential is

vLDA
x (r) =

4

3
cxn(r)

1/3. (1.54)

Therefore, the integrals in Eq. (1.49) and Eq. (1.52) cannot be calculated analytically, but are
instead evaluated by numerical integration

Vxc,µν ≈
∑

k

wk χ
∗
µ(rk)vxc(rk)χν(rk), (1.55)

and
Elocal

xc ≈
∑

k

wk f(n(rk)), (1.56)

where rk and wk are quadrature points and weights. For example, for polyatomic molecules, the
multicenter numerical integration scheme of Becke [11] is generally used.

1.3.4 Extension to spin density-functional theory

For dealing with an external magnetic field, DFT has been extended from the total density
to spin-resolved densities [12,13]. Without external magnetic fields, this spin density-functional
theory is in principle not necessary, even for open-shell systems. In practice, however, the depen-
dence on the spin densities allows one to construct approximate exchange-correlation functionals
that are more accurate, and is therefore almost always used for open-shell systems.

The universal density functional is now defined as [14]

F [n↑, n↓] = min
Ψ→n↑,n↓

〈Ψ|T̂ + Ŵee|Ψ〉, (1.57)

where the search is over normalized antisymmetric wave functions Ψ which yield fixed spin
densities

n↑(r) = N

∫

· · ·
∫

|Ψ(r ↑,x2, ...,xN )|2 dx2...dxN , (1.58a)
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n↓(r) = N

∫

· · ·
∫

|Ψ(r ↓,x2, ...,xN )|2 dx2...dxN , (1.58b)

which integrate respectively to the numbers of ↑- and ↓-spin electrons,N↑ andN↓, i.e.
∫

n↑(r)dr =
N↑ and

∫

n↓(r)dr = N↓. A KS method is obtained by decomposing F [n↑, n↓] as

F [n↑, n↓] = Ts[n↑, n↓] + EH[n] + Exc[n↑, n↓], (1.59)

where Ts[n↑, n↓] is defined with a constrained search over spin-unrestricted Slater determinants
Φ

Ts[n↑, n↓] = min
Φ→n↑,n↓

〈Φ|T̂ |Φ〉, (1.60)

and EH[n] is the Hartree energy which is a functional of the total density n = n↑ + n↓ only
[Eq. (1.24)], and Exc[n↑, n↓] is the spin-resolved exchange-correlation energy functional. Writ-
ing the spatial orbitals of the spin-unrestricted determinant as φi↑(r) and φi↓(r) (with indices
explicitly including spin now for clarity), we have now the spin-dependent KS equations

(

−1

2
∇2 + vne(r) + vH(r) + vxc,↑(r)

)

φi↑(r) = εi↑φi↑(r), (1.61a)

(

−1

2
∇2 + vne(r) + vH(r) + vxc,↓(r)

)

φi↓(r) = εi↓φi↓(r), (1.61b)

with the spin-dependent exchange-correlation potentials

vxc,↑(r) =
δExc[n↑, n↓]
δn↑(r)

, and vxc,↓(r) =
δExc[n↑, n↓]
δn↓(r)

, (1.62)

and the spin densities

n↑(r) =
N↑
∑

i=1

|φi↑(r)|2 and n↓(r) =
N↓
∑

i=1

|φi↓(r)|2 . (1.63)

It turns out that the spin-dependent exchange functional Ex[n↑, n↓] can be exactly expressed
in terms of the spin-independent exchange functional Ex[n] [15]

Ex[n↑, n↓] =
1

2
(Ex[2n↑] + Ex[2n↓]) , (1.64)

which is known as the spin-scaling relation and stems directly from the fact the ↑- and ↓-spin
electrons are uncoupled in the exchange energy. Therefore, any approximation for the spin-
independent exchange functional Ex[n] can be easily extended to an approximation for the
spin-dependent exchange functional Ex[n↑, n↓]. Unfortunately, there is no such relation for the
correlation functional.

Exercise 5 : Prove the spin-scaling relation of Eq. (1.64).

Obviously, in the spin-unpolarized case, i.e. n↑ = n↓ = n/2, this spin-dependent formalism
reduces to the spin-independent one.

12



2 More advanced topics in density-functional theory

2.1 The exchange and correlation functionals in terms of the exchange and

correlation holes

2.1.1 The exchange and correlation holes

Let us consider the pair density associated with the wave function Ψ[n] defined in Eq. (1.17)

n2(r1, r2) = N(N − 1)

∫

· · ·
∫

|Ψ[n](x1,x2, ...,xN )|2 dσ1dσ2dx3...dxN , (2.1)

which is a functional of the density, and is normalized to the number of electron pairs,
∫∫

n2(r1, r2)dr1dr2 = N(N − 1). It is proportional to the probability density of finding two
electrons at positions (r1, r2) with all the other electrons anywhere. The pair density is useful
to express the expectation of the electron-electron interaction operator

〈Ψ[n]|Ŵee|Ψ[n]〉 = 1

2

∫∫

n2(r1, r2)

|r1 − r2|
dr1dr2. (2.2)

Mirroring the decomposition of the Hartree-exchange-correlation energy performed in the KS
method [Eq. (1.23)], the pair density can be decomposed as

n2(r1, r2) = n(r1)n(r2) + n2,xc(r1, r2). (2.3)

The product of the densities n(r1)n(r2) corresponds to the case of independent electrons and
the exchange-correlation pair density n2,xc(r1, r2) represents the modification of the pair density
due to exchange and correlation effects between the electrons. It can be further written as

n2,xc(r1, r2) = n(r1)nxc(r1, r2), (2.4)

where nxc(r1, r2) is the exchange-correlation hole. It can be interpreted as the modification due
to exchange and correlation effects of the conditional probability of finding an electron at r2
knowing that one has been found at r1. The positivity of n2(r1, r2) implies that

nxc(r1, r2) ≥ −n(r2). (2.5)

Moreover, we have the following sum rule
∫

nxc(r1, r2)dr2 = −1. (2.6)

Exercise 6 : Prove the sum rule of Eq. (2.6).

We can separate the exchange and correlation contributions in the exchange-correlation hole.
For this, consider the pair density n2,KS(r1, r2) associated with the KS single-determinant wave
function Φ[n] defined in Eq. (1.21). It can be decomposed as

n2,KS(r1, r2) = n(r1)n(r2) + n2,x(r1, r2), (2.7)

where n2,x(r1, r2) is the exchange pair density, which is further written as

n2,x(r1, r2) = n(r1)nx(r1, r2), (2.8)

13



where nx(r1, r2) is the exchange hole. Just like the exchange-correlation hole, the exchange hole
satisfies the conditions

nx(r1, r2) ≥ −n(r2), (2.9)

and
∫

nx(r1, r2)dr2 = −1. (2.10)

Moreover, by writing the exchange hole in terms of the KS orbitals4, one can show that it is
always negative

nx(r1, r2) ≤ 0. (2.11)

From Eqs. (1.26), (2.2), (2.7), and (2.8), it can be seen that the exchange energy functional can
be written in terms of the exchange hole

Ex[n] =
1

2

∫∫

n(r1)nx(r1, r2)

|r1 − r2|
dr1dr2, (2.12)

leading to the interpretation of Ex as the electrostatic interaction energy of an electron and its
exchange hole. It is also useful to write the exchange energy functional as

Ex[n] =

∫

n(r1)εx[n](r1)dr1, (2.13)

where εx[n](r1) is the exchange energy per particle

εx[n](r1) =
1

2

∫

nx(r1, r2)

|r1 − r2|
dr2, (2.14)

which is itself a functional of the density. In approximate exchange density functionals, the
quantity εx[n](r1) is usually what is approximated.

Exercise 7 : Show that, for finite systems, εx[n](r) ∼
r→+∞

−1/(2r).

The correlation hole is defined as the difference

nc(r1, r2) = nxc(r1, r2)− nx(r1, r2), (2.15)

and, from Eqs. (2.6) and (2.10), satisfies the sum rule

∫

nc(r1, r2)dr2 = 0, (2.16)

which implies that the correlation hole has negative and positive contributions5. The potential
contribution to the correlation energy can be written in terms of the correlation hole

Uc[n] =
1

2

∫∫

n(r1)nc(r1, r2)

|r1 − r2|
dr1dr2. (2.17)

In order to express the total correlation energy Ec[n] = Tc[n] + Uc[n] in a form similar to
Eq. (2.17), we need to introduce the adiabatic-connection formalism.

4The exchange hole can be written as nx(r1, r2) = −
∑

σ=↑,↓ |n1,σ(r1, r2)|
2/n(r1) with the one-electron KS

density matrix n1,σ(r1, r2) =
∑Nσ

j=1 φ
∗
jσ(r2)φjσ(r1).

5Therefore, the correlation hole is really a “hole” only in some region of space, and a “bump” in other regions.
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2.1.2 The adiabatic connection

The idea of the adiabatic connection is to have a continuous path between the non-interacting
KS system and the physical system while keeping the ground-state density constant. An infinity
of such paths are possible, but the one most often considered consists in switching on the electron-
electron interaction linearly with a coupling constant λ. The Hamiltonian along this adiabatic
connection is

Ĥλ = T̂ + λŴee + V̂ λ, (2.18)

where V̂ λ is the external local potential operator imposing that the ground-state density is the
same as the ground-state density of the physical system for all λ. The Hamiltonian (2.18) reduces
to the KS non-interacting Hamiltonian for λ = 0 and to the physical Hamiltonian for λ = 1.

Just as for the physical system, it is possible to define a universal functional associated with
the system of Eq. (2.18) for each value of the parameter λ

F λ[n] = min
Ψ→n

〈Ψ|T̂ + λŴee|Ψ〉 = 〈Ψλ[n]|T̂ + λŴee|Ψλ[n]〉, (2.19)

the minimizing wave function being denoted by Ψλ[n]. This functional can be decomposed as

F λ[n] = Ts[n] + Eλ
H[n] + Eλ

xc[n], (2.20)

where Eλ
H[n] is the Hartree energy functional associated with the interaction λŴee and is simply

linear in λ

Eλ
H[n] =

1

2

∫∫

n(r1)n(r2)
λ

|r1 − r2|
dr1dr2 = λEH[n], (2.21)

and Eλ
xc[n] is a remaining exchange-correlation functional. It can be decomposed as a sum of an

exchange contribution, which is also linear in λ,

Eλ
x [n] = 〈Φ[n]|λŴee|Φ[n]〉 − Eλ

H[n] = λEx[n], (2.22)

and a correlation contribution, which is nonlinear in λ,

Eλ
c [n] = 〈Ψλ[n]|T̂ + λŴee|Ψλ[n]〉 − 〈Φ[n]|T̂ + λŴee|Φ[n]〉. (2.23)

Taking the derivative of Eq. (2.23) with respect to λ and using the Hellmann-Feynman
theorem for the wave function Ψλ[n]6, we obtain

∂Eλ
c [n]

∂λ
= 〈Ψλ[n]|Ŵee|Ψλ[n]〉 − 〈Φ[n]|Ŵee|Φ[n]〉, (2.24)

Integrating over λ from 0 to 1, and using Eλ=1
c [n] = Ec[n] and Eλ=0

c [n] = 0, we arrive at the
adiabatic-connection formula for the correlation energy functional of the physical system

Ec[n] =

∫ 1

0
dλ 〈Ψλ[n]|Ŵee|Ψλ[n]〉 − 〈Φ[n]|Ŵee|Φ[n]〉. (2.25)

6In this context, the Hellmann-Feynman theorem states that in the derivative ∂Fλ[n]
∂λ

= 〈 ∂Ψ
λ[n]
∂λ

|T̂ +

λŴee|Ψ
λ[n]〉 + 〈Ψλ[n]|Ŵee|Ψ

λ[n]〉 + 〈Ψλ[n]|T̂ + λŴee|
∂Ψλ[n]

∂λ
〉 the first and third terms involving the derivative

of Ψλ[n] vanish. This is due to the fact that Ψλ[n] is obtained via the minimization of Eq. (2.19) and thus any
variation of Ψλ[n] which keeps the density constant (which is the case for a variation with respect to λ) gives a
vanishing variation of Fλ[n].
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By introducing the correlation hole nλc (r1, r2) associated to the wave function Ψλ[n], the adiabatic-
connection formula for the correlation energy can also be written as

Ec[n] =
1

2

∫ 1

0
dλ

∫∫

n(r1)n
λ
c (r1, r2)

|r1 − r2|
dr1dr2, (2.26)

or, noting that nλc (r1, r2) is the only quantity that depends on λ in Eq. (2.26), in a more compact
way,

Ec[n] =
1

2

∫∫

n(r1)n̄c(r1, r2)

|r1 − r2|
dr1dr2, (2.27)

where n̄c(r1, r2) =
∫ 1
0 dλ nλc (r1, r2) is the coupling-constant-integrated correlation hole. It leads

to the interpretation of Ec as the electrostatic interaction energy of an electron with its coupling-
constant-integrated correlation hole. As for the exchange energy, the correlation energy func-
tional can be written as

Ec[n] =

∫

n(r1)εc[n](r1)dr1, (2.28)

where εc[n](r1) is the correlation energy per particle

εc[n](r1) =
1

2

∫

n̄c(r1, r2)

|r1 − r2|
dr2, (2.29)

which is a functional of the density that needs to be approximated.

2.2 Fractional electron numbers and frontier orbital energies

In 1982, Perdew, Parr, Levy, and Balduz [16] extended DFT to fractional electron numbers.
Although systems with a noninteger number of electrons may appear as unphysical, such systems
in fact naturally arise in quantum mechanics, e.g. as fragments from a molecular dissociation in
entangled quantum states. One important result of this extension is that the frontier KS orbital
energies can be seen as derivatives of the total energy with respect to the electron number.

2.2.1 Quantum mechanics with fractional electron numbers

The ground-state energy of a system with a fixed fractional number of electronsN = N−1+f
(where N is an integer and 0 ≤ f ≤ 1) can be defined in an ensemble formalism as

EN−1+f
0 = min

Γ̂
Tr
[

Γ̂
(

T̂ + Ŵee + V̂ne

)]

, (2.30)

where Tr denotes the trace7 (in Fock space) and the minimization is over ensemble density
matrices Γ̂ of the form

Γ̂ = (1− f)|ΨN−1〉〈ΨN−1|+ f |ΨN 〉〈ΨN |, (2.31)

where f is fixed, and ΨN−1 and ΨN are (N−1)- and N -electron normalized antisymmetric wave
functions that must be varied. This form of Γ̂ in Eq. (2.31) ensures an average electron number
of N − 1 + f .8 The minimizing ensemble density matrix is

Γ̂0 = (1− f)|ΨN−1
0 〉〈ΨN−1

0 |+ f |ΨN
0 〉〈ΨN

0 |, (2.32)

7The trace of an operator Â is defined as Tr[Â] =
∑

n〈Ψn|Â|Ψn〉 where {Ψn} is an orthonormal basis of states.
8In fact, with the assumption that the ground-state energy for integer electron numbers in a fixed external

potential is a convex function, EN ≤ (EN+1 + EN−1)/2, which is true for any known realistic system, the
minimization in Eq. (2.30) can be done over ensemble density matrices Γ̂ constructed from wave functions with
any number of electrons with the only constraint that Γ̂ gives an average electron number of N − 1 + f .
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where ΨN−1
0 and ΨN

0 are the ground-state wave functions of the (N−1)- and N -electron systems,
respectively.

The fact that the minimizing ensemble density matrix is linear in f implies that the ground-
state energy is also linear in f between the integer electron numbers N − 1 and N

EN−1+f
0 = (1− f)EN−1

0 + fEN
0 , (2.33)

where EN−1
0 and EN

0 are the ground-state energies of the (N − 1)- and N -electron systems,
respectively. Similarly, between the integer electron numbers N and N + 1, we have

EN+f
0 = (1− f)EN

0 + fEN+1
0 . (2.34)

Thus, the ground-state energy is a continuous piecewise linear function of the fractional electron
number N .

Exercise 8 : Prove that the minimizing ensemble density matrix is indeed given by Eq. (2.32)
and the ground-state energy by Eq. (2.33).

The derivative of EN
0 with respect to N defines the electronic chemical potential 9

µ =
∂EN

0

∂N , (2.35)

and is obtained as the derivative with respect to f of Eq. (2.33) for N − 1 < N < N

(

∂EN
0

∂N

)

N−1<N<N

= EN
0 − EN−1

0 = −IN , (2.36)

where IN is the ionization energy of the N electron system (IN is always strictly positive), and
similarly from Eq. (2.34) for N < N < N + 1

(

∂EN
0

∂N

)

N<N<N+1

= EN+1
0 − EN

0 = −AN , (2.37)

where AN is the electron affinity of the N electron system (with this definition, AN is strictly
positive if the (N + 1)-electron system is bound, otherwise it is zero). The electronic chemical
potential µ has thus a discontinuity at the integer electron number N . So, the plot of EN

0

with respect to N is made of a series of straight lines between integer electron numbers, with
derivative discontinuities at each integer.

2.2.2 Density-functional theory with fractional electron numbers

The universal density functional F [n] is extended to densities integrating to a fractional
electron number,

∫

n(r)dr = N = N − 1 + f , as

F [n] = min
Γ̂→n

Tr
[

Γ̂
(

T̂ + Ŵee

)]

, (2.38)

9The electronic chemical potential is an important quantity in the field of conceptual DFT. The electronegativity
of a system can be defined as the opposite of the electronic chemical potential
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where the minimization is performed over ensemble density matrices Γ̂ of the form written in
Eq. (2.31) and yielding the density n. As usual, to set up a KS method, F [n] is decomposed as

F [n] = Ts[n] + EHxc[n], (2.39)

where Ts[n] = minΓ̂s→nTr[Γ̂sT̂ ] is the KS non-interacting kinetic-energy functional and EHxc[n]
is the remaining Hartree-exchange-correlation functional. The exact ground-state energy can
then be expressed as

EN−1+f
0 = min

Γ̂s

{

Tr
[

Γ̂s

(

T̂ + V̂ne

)]

+ EHxc[nΓ̂s
]
}

, (2.40)

where the minimization is over ensemble non-interacting density matrices Γ̂s of the form

Γ̂s = (1− f)|ΦN−1,f 〉〈ΦN−1,f |+ f |ΦN,f 〉〈ΦN,f |, (2.41)

where ΦN−1,f and ΦN,f are (N − 1)- and N -electron single-determinant wave functions, respec-
tively, constructed from a common set of orbitals {φi} depending on the fixed f . In Eq. (2.40),
EHxc is evaluated at nΓ̂s

, i.e. the density of Γ̂s. The total electronic energy can then be written
in terms of these orbitals and occupation numbers ni

E =

N
∑

i=1

ni

∫

φ∗i (r)
(

−1

2
∇2 + vne(r)

)

φi(r)dr+ EHxc[n], (2.42)

with the density

n(r) =
N
∑

i=1

ni |φi(r)|2 , (2.43)

where ni = 1 for i ≤ N − 1 and nN = f for the highest occupied molecular orbital (HOMO)
which is assumed here to be nondegenerate for simplicity. As in the standard KS method,
the variation of Eq. (2.42) with respect to the orthonormal orbitals but with fixed occupation
numbers leads to the self-consistent KS equations

(

−1

2
∇2 + vs(r)

)

φi(r) = εiφi(r), (2.44)

where vs(r) is the KS potential

vs(r) = vne(r) +
δEHxc[n]

δn(r)
. (2.45)

Thus, the KS equations for fractional electron numbers look identical (with the caveat of a
fractional occupation number for the HOMO) to the standard KS equations for integer electron
numbers. There is however one important difference. In the standard KS equations, the func-
tional derivative of EHxc[n] is taken with respect to density variations δn(r) keeping the number
of electrons constant, i.e.

∫

δn(r)dr = 0. As a consequence, the functional derivative is defined
only up to an additive constant, which can be seen from its definition

δEHxc[n] =

∫
(

δEHxc[n]

δn(r)
+ const

)

δn(r)dr. (2.46)

In the present extension to fractional electron numbers, since the functional EHxc[n] is now
defined for densities having any noninteger electron numbers, its functional derivative can now be
generally taken with respect to density variations which can change the number of electrons, i.e.
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∫

δn(r)dr 6= 0. Consequently, the constant in Eq. (2.46) is now determined. This unambiguously
fixes the values of the KS orbital energies.

Eqs. (2.42)-(2.45) constitutes a general KS method with fractional occupation numbers. A
useful result is that, after optimizing the orbitals with fixed occupation numbers, the derivative
of the total energy with respect to the occupation number ni of an occupied orbital equals the
energy εi of this orbital,

∂E

∂ni
= εi, (2.47)

which is known as Janak’s theorem [17].

Exercise 9 : Prove Janak’s theorem.

For clarity in the discussion, we will now explicitly indicate the dependence on the electron
number N in the density nN (r), the KS potential vNs (r), the KS orbitals φNi (r), and the KS
orbital energies εNi .

2.2.3 The HOMO energy and the ionization energy

Applying Janak’s theorem for the case of the HOMO for a fractional electron number N =
N − δ where δ → 0+ (the limit will be always tacitly assumed) gives

(

∂EN
0

∂N

)

N−δ

= εN−δ
H = εNH , (2.48)

where εNH is the HOMO energy of the N -electron system (here, the HOMO is the N th orbital).
Notice that, since ∂EN

0 /∂N has a discontinuity at the integer electron number N , it is important
to specify that εNH is defined as the limit when N is approached from the left (electron-deficient)
side. Combining this result with Eq. (2.36) leads to

εNH = −IN , (2.49)

i.e., the energy of the HOMO KS orbital is the opposite of the exact ionization energy.

This can be used, together with the asymptotic behavior of the density, to determine the
constant in the KS potential. Indeed, for finite systems, it can be shown that the exact ground-
state density of the N -electron system decays exponentially for r = |r| → +∞ with an exponent
related to the ionization energy IN [18]

nN (r) ∼
r→+∞

e−2
√
2IN r. (2.50)

Besides, each occupied KS orbitals of the N -electron system has the following asymptotic be-
havior (see Exercise 10)

φNi (r) ∼
r→+∞

e−
√

−2(εNi −vNs (∞)) r, (2.51)

where vNs (∞) = vN−δ
s (∞) is the asymptotic value of the KS potential (defined as the limit from

the left side) which is for now unknown but fixed since the additive constant in the KS potential
is determined now according to the discussion after Eq. (2.46). Consequently, the HOMO KS
orbital φNH (r) is the slowest decaying orbital and dominates the asymptotic decay of the KS
density [via Eq. (2.43)]

nN (r) ∼
r→+∞

e−2
√

−2(εNH−vNs (∞)) r. (2.52)
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Since the KS density is the exact density, Eqs. (2.50) and (2.52) must agree, and since we have
already shown that εNH = −IN , we thus find

vNs (∞) = 0, (2.53)

in accordance with the choice usually made in the standard KS method for integer electron
numbers.

Exercise 10 : Check that the asymptotic decay of the KS orbitals is indeed given by
Eq. (2.51). For this, use Eq. (2.44) and the asymptotic behavior of the KS potential
vNs (r) ∼

r→+∞
vNs (∞) + (Q− 1)/r where Q is the total charge of the system.

2.2.4 The LUMO energy, the electron affinity, and the derivative discontinuity

Applying Janak’s theorem for the HOMO but now for a fractional electron numberN = N+δ
where δ → 0+ gives

(

∂EN
0

∂N

)

N+δ

= εN+δ
H , (2.54)

where εN+δ
H is the HOMO energy from the right (excess-electron) side of the discontinuity (here,

the HOMO is the (N+1)th orbital). Since the derivative is in fact the same for allN < N < N+1,
it is also the HOMO energy of the (N +1)-electron system, εN+δ

H = εN+1−δ
H = εN+1

H . Combining
Eq. (2.54) with Eq. (2.37) leads to

εN+δ
H = −AN . (2.55)

Naively, one may think that εN+δ
H is equal to the LUMO energy of the N -electron system

εNL (again defined as the limit from the left side, εNL = εN−δ
L , i.e. the (N + 1)th orbital), and

therefore that the LUMO KS energy equals to the opposite of the electron affinity. However,
this is not as simple. Let us compare εN+δ

H that we can write as

εN+δ
H =

∫

φN+δ
H (r)∗

(

−1

2
∇2 + vN+δ

s (r)

)

φN+δ
H (r)dr, (2.56)

with εN−δ
L that we can write as

εN−δ
L =

∫

φN−δ
L (r)∗

(

−1

2
∇2 + vN−δ

s (r)

)

φN−δ
L (r)dr. (2.57)

The problem is that there is nothing preventing the KS potential to have a discontinuity
vN+δ
s (r) 6= vN−δ

s (r). Indeed, the continuity of the density implies that nN+δ(r) = nN−δ(r),10

but this only imposes that vN+δ
s (r) and vN−δ

s (r) be equal up to an additive spatial constant
(according to the Hohenberg-Kohn theorem). So we can have:

vN+δ
s (r)− vN−δ

s (r) = ∆N
xc, (2.58)

where ∆N
xc is independent from r. Since the two potentials just differ by an additive constant,

the orbitals are continuous at the integer N , and in particular φN+δ
H (r) = φN−δ

L (r). Using this
fact and Eq. (2.58), we find

εN+δ
H =

∫

φN−δ
L (r)∗

(

−1

2
∇2 + vN−δ

s (r)

)

φN−δ
L (r)dr+∆N

xc

= εN−δ
L +∆N

xc. (2.59)

10From the linearity of the minimizing ensemble density matrix in Eq. (2.32), the exact ground-state density is a
continuous piecewise linear function of N : nN−1+f (r) = (1− f)nN−1(r)+ fnN (r) and nN+f (r) = (1− f)nN (r)+
fnN+1(r), just like the total ground-state energy.
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In conclusion, the LUMO energy of the N -electron system is not the opposite of the exact
electron affinity

εNL = −AN −∆N
xc, (2.60)

due to the possible discontinuity ∆N
xc in the KS potential.

Such a discontinuity can only come from the exchange-correlation part of the potential vNxc(r)
since vne(r) is independent from N and the Hartree potential vNH (r) =

∫

nN (r′)/|r− r′|dr′ is a
continuous function of N . So, we have

∆N
xc = vN+δ

xc (r)− vN−δ
xc (r) =

(

δExc[n]

δn(r)

)

N+δ

−
(

δExc[n]

δn(r)

)

N−δ

, (2.61)

i.e. ∆N
xc is the derivative discontinuity in the exchange-correlation energy functional Exc[n].

Theoretical and numerical examples show that this derivative discontinuity does exist [19–21].

2.2.5 Fundamental gap

The fundamental gap of the N -electron system is defined as

EN
gap = IN −AN . (2.62)

Using Eqs. (2.49) and (2.60), it can be expressed as

EN
gap = εNL − εNH +∆N

xc, (2.63)

i.e., the difference between the LUMO and HOMO energies which defines the KS gap, EKS,N
gap =

εNL −εNH , is not equal to the exact fundamental gap of the system. The difference comes from the
derivative discontinuity ∆N

xc. In practice, this last term can represent an important contribution
to the fundamental gap. In the special case of open-shell systems, we have εNL = εNH , and thus
if the fundamental gap of an open-shell system is not zero (Mott insulator), it is entirely given
by ∆N

xc.
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3 Usual approximations for the exchange-correlation energy

We review here the main classes of usual approximations for the exchange-correlation en-
ergy. These classes are roughly ordered from the simplest to the most sophisticated ones. The
discussion is focus on the contents of the approximations, not their performance in practical
calculations. On average, more sophisticated approximations are usually more accurate than
simpler ones, even though many exceptions can be found. For a recent very intensive benchmark
of approximate functionals, see Ref. [22]. The more complicated case of the so-called orbital-
dependent exchange-correlation functionals such as exact exchange and the random-phase ap-
proximation, beyond usual hybrid or double-hybrid approximations, is treated separately in
Section 4.

3.1 The local-density approximation

In the local-density approximation (LDA), introduced by Kohn and Sham [10], the exchange-
correlation functional is approximated as

ELDA
xc [n] =

∫

n(r)εunifxc (n(r))dr, (3.1)

where εunifxc (n) is the exchange-correlation energy per particle of the infinite uniform electron

gas with the density n. The uniform electron gas represents a family of systems of interacting
electrons with an arbitrary spatially constant density n that acts a parameter. Thus, in the
LDA, the exchange-correlation energy per particle of an inhomogeneous system at a spatial
point of density n(r) is approximated as the exchange-correlation energy per particle of the
uniform electron gas of the same density.

The function εunifxc (n) is a sum of exchange and correlation contributions, εunifxc (n) = εunifx (n)+
εunifc (n). The exchange energy per particle of the uniform electron gas can be calculated analyt-
ically

εunifx (n) = cx n
1/3, (3.2)

where cx = −(3/4)(3/π)1/3. The LDA exchange functional is associated with the names of
Dirac [23] and Slater [24].

Exercise 11 : The exchange energy of the uniform electron gas can be obtained by starting
from the exact exchange energy expression for closed-shell systems [Eq. (3.18) or (4.1) with
φi↑(r) = φi↓(r) = φi(r)]

Ex = −
N/2
∑

i=1

N/2
∑

j=1

∫∫

φ∗i (r1)φj(r1)φ
∗
j (r2)φi(r2)

|r1 − r2|
dr1dr2, (3.3)

and by making the replacements φi(r) → (1/V )1/2 eık·r and
∑N/2

i=1 → V/(2π)3
∫

ΩkF
dk where

ΩkF is the sphere of radius equal to the Fermi momentum kF = (3π2n)1/3 with the density
n = N/V , and doing the spatial integrations on a large box of volume V (N → ∞ and
V → ∞ such that n = N/V remains finite). Show that this gives

Eunif
x = − V

(2π)6

∫

ΩkF

dk1

∫

ΩkF

dk2
4π

|k1 − k2|2
. (3.4)
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Calculate this integral to finally obtain the exchange energy per particle εunifx = Eunif
x /N .

Exercise 12 : Show that the expression of the LDA exchange potential is (see Appendix
B for an introduction to functional calculus)

vLDA
x (r) =

δELDA
x [n]

δn(r)
=

4

3
cx n(r)

1/3. (3.5)

Does it satisfy the asymptotic behavior,

vx(r) ∼
r→+∞

−1

r
, (3.6)

of the exact exchange potential?

The correlation energy per particle εunifc (n) of the uniform electron gas cannot be calculated
analytically. This quantity has been obtained numerically for a number of densities n using
accurate quantum Monte Carlo calculations [25], and fitted to a parametrized function of n
satisfying the known high- and low-density expansions. Expressed in terms of the Wigner-Seitz
radius rs = (3/(4πn))1/3, the first terms of the high-density expansion (rs → 0) have the form

εunifc = A ln rs +B + Crs ln rs +O(rs), (3.7)

and the first terms of the low-density expansion (rs → +∞) have the form

εunifc =
a

rs
+

b

r
3/2
s

+O

(

1

r2s

)

, (3.8)

where A, B, C, a, and b are constants. The two most used parametrizations are the ones of
Vosko, Wilk, and Nusair (VWN) [26] and the one of Perdew and Wang (PW92) [27]. Their forms
are too complicated to be given here. These parametrizations also include the generalization to
spin densities, εunifc (n↑, n↓) differing from εunifc (n) for spin-polarized systems (n↑ 6= n↓), which
is sometimes specifically referred to as local-spin-density (LSD) approximation. For a recent
review on the calculations of the exchange and correlation energies of the uniform electron gas,
see Ref. [28].

Exercise 13 : The Wigner correlation functional is a simple functional derived from the
low-density limit of the uniform electron gas

EW
c [n] =

∫

n(r)
c

d+ rs(r)
dr, (3.9)

where rs(r) = (3/(4πn(r))1/3, and c and d are two constants. Calculate the corresponding
correlation potential vWc (r).

3.2 Generalized-gradient approximations

The next logical step beyond the LDA is the gradient-expansion approximation (GEA), initi-
ated by Kohn and Sham [10]. One way of deriving the GEA is to start from the uniform electron
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gas, introduce a weak and slowly-varying external potential v(r), and expand the exchange-
correlation energy in terms of the gradients of the density. At second order, one obtains a
functional of the form

EGEA
xc [n] = ELDA

xc [n] +

∫

Cxc(n(r)) n(r)
4/3

( ∇n(r)
n(r)4/3

)2

dr, (3.10)

where Cxc(n) = Cx+Cc(n) is the sum of the exchange and correlation coefficients of the second-
order gradient expansion. Note that the gradient expansion is most naturally written in terms
of the reduced density gradient |∇n|/n4/3 which is a dimensionless quantity. The GEA should
improve over the LDA provided that the reduced density gradient is small. Unfortunately, for
real systems, the reduced density gradient can be large in some regions of space, and the GEA
turns out to be a worse approximation than the LDA.

The failure of the GEA lead to the development of generalized-gradient approximations

(GGAs), which really started in the 1980s, of the generic form

EGGA
xc [n] =

∫

f(n(r),∇n(r))dr, (3.11)

where f is some function. The GGAs are semilocal approximations in the sense that f does
not only use the local value of the density n(r) but also its gradient ∇n(r)11. For simplicity,
we consider here only the spin-independent form, but in practice GGA functionals are more
generally formulated in terms of spin densities (n↑, n↓) and their gradients (∇n↑, ∇n↓)12.

Exercise 14 : Show that the potential of a GGA functional has the following form

vGGA
xc (r) =

δEGGA
xc [n]

δn(r)
=
∂f

∂n
(n(r),∇n(r))−∇ · ∂f

∂∇n(n(r),∇n(r)), (3.12)

which is a 3-dimensional generalization of Eq. (B.13). Give then a practical expression for
the contribution V GGA

xc,µν of this potential to the KS Fock matrix [Eq. (1.49)].

Many GGA functionals have been proposed. We very briefly review here some of the most
widely used ones.

B88 exchange functional

The Becke 88 (B88 or B) [29] exchange functional is formulated as an additive correction
to LDA. It consists in a compact function of n and |∇n|/n4/3 chosen so as to satisfy the exact
asymptotic behavior of the exchange energy per particle for finite systems (see Exercise 7), and
with an empirical parameter fitted to Hartree-Fock exchange energies of rare-gas atoms.

LYP correlation functional

The Lee-Yang-Parr (LYP) [30] correlation functional is one of the rare functionals which have
not been constructed starting from LDA. It originates from the Colle-Salvetti [31] correlation-
energy approximation depending on the Hartree-Fock pair density and containing four param-
eters fitted to Helium data. By making a further reasonable approximation, LYP turned the

11For generally and simplicity, we consider here that the GGAs depend on the density gradient ∇n(r), but in
practice GGAs depend only on the module of the density gradient |∇n(r)|, or equivalently on its square (∇n(r))2,
and not on its direction.

12Again, in practice, the spin-dependent GGAs do not actually depend on the gradients ∇n↑ and ∇n↓ but on
the scalar quantities (∇n↑)

2, (∇n↓)
2, and ∇n↑ · ∇n↓
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Colle-Salvetti expression into a density functional depending on the density n, the square of the
density gradient (∇n)2, and the Laplacian of the density ∇2n. The dependence on the Laplacian
can be exactly eliminated by an integration by parts [32].

PW91 exchange-correlation functional

The Perdew-Wang 91 (PW91) (see Refs. [33–35]) exchange-correlation functional is based
on a model of the exchange hole nx(r1, r2) in Eq. (2.14) and of the coupling-constant-integrated
correlation hole in Eq. (2.29). The idea is to start from the GEA model of these holes given
as gradient expansions and remove the unrealistic long-range parts of these holes to restore
important conditions satisfied by the LDA. Specifically, the spurious positive parts of the GEA
exchange hole are removed to enforce the negativity condition of Eq. (2.11) and a cutoff in
|r1 − r2| is applied to enforce the normalization condition of Eq. (2.10). Similarly, a cutoff is
applied on the GEA correlation hole to enforce the condition that the hole integrates to zero
[Eq. (2.16)]. The exchange and correlation energies per particle calculated from these numerical
holes are then fitted to functions of n and |∇n| chosen to satisfy a number of exact conditions.

PBE exchange-correlation functional

The Perdew-Burke-Ernzerhof (PBE) [36] exchange-correlation functional is a simplification
of the PW91 functional. The exchange and correlation energies per particle are expressed as
simpler functions of n and |∇n| enforcing less exact conditions and with no fitted parameters.
Specifically, the function used for correlation enforces the second-order small-gradient expansion
in the high-density limit, the vanishing of correlation in the large-gradient limit, and removes
the logarithm divergence of the LDA in the high-density limit [see Eq. (3.7)]. The function used
for exchange is chosen to cancel out the second-order small-gradient expansion of correlation
and enforces the Lieb-Oxford bound in the large-gradient limit.

3.3 Meta-generalized-gradient approximations

The meta-generalized-gradient approximations (meta-GGAs or mGGAs) are of the generic
form

EmGGA
xc =

∫

f(n(r),∇n(r),∇2n(r), τ(r))dr, (3.13)

i.e., they use more ingredients than the GGAs, namely the Laplacian of the density ∇2n(r)
and/or the non-interacting positive kinetic energy density τ(r)

τ(r) =
1

2

N
∑

i=1

|∇φi(r)|2 , (3.14)

where φi(r) are the KS orbitals. Note that meta-GGAs are only implicit functionals of the
density since τ(r) is itself an implicit functional of the density through the orbitals. To avoid
complications for calculating the functional derivative, they are usually considered as functionals
of n and τ taken as independent variables, EmGGA

xc [n, τ ]. This tacitly implies a slight extension
of the usual KS method13. The meta-GGAs are considered part of the family of semilocal
approximations, in the sense that τ(r) depends only the gradient of the orbitals at point r.
Again, we consider here only the spin-independent form, but meta-GGAs are more generally
formulated in terms of spin-resolved quantities (n↑, n↓, ∇n↑, ∇n↓, ∇2n↑, ∇2n↓, τ↑, τ↓).

13Specifically, for meta-GGA approximations, the equation giving the ground-state energy, Eq. (1.22), now

becomes: E0 = minΦ

{

〈Φ|T̂ + V̂ne|Φ〉+ EH[nΦ] + Exc[nΦ, τΦ]
}

where nΦ and τΦ are the density and positive

kinetic energy density of the single determinant Φ.
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One motivation for the introduction of the variable τ(r) is that it appears in the short-range
expansion of the exchange hole [37], which for the case of a closed-shell system is

nx(r, r
′) = −n(r)

2
− 1

3

(

∇2n(r)− 4τ(r) +
|∇n(r)|2
2n(r)

)

|r− r′|2 + · · · . (3.15)

Another important motivation is that τ(r) can be used to make the correlation energy per
particle εc(r) correctly vanish in spatial regions where the density has a one-electron character.
This is done by comparing τ(r) with the von Weizsäcker kinetic energy density

τW(r) =
|∇n(r)|2
8n(r)

, (3.16)

which is exact for one-electron systems, e.g. by introducing the ratio τ(r)/τW(r).

Exercise 15 : Show that the von Weizsäcker kinetic energy density in Eq. (3.16) is indeed
exact for one-electron systems.

One the most used meta-GGA approximation is the Tao-Perdew-Staroverov-Scuseria (TPSS)
[38] exchange-correlation functional. A more recently developed meta-GGA approximation is
the SCAN exchange-correlation functional [39] which satisfies 17 known exact constraints and
contains 7 parameters determined by fitting to a few simple systems.

3.4 Hybrid approximations

Based on arguments relying on the adiabatic-connection formalism, in 1993 Becke [40] pro-
posed to mix a fraction of the exact or Hartree-Fock (HF) exchange energy EHF

x with GGA
functionals. In particular, he proposed a three-parameter hybrid (3H) approximation [41] of the
form

E3H
xc = a EHF

x + b EGGA
x + (1− a− b) ELDA

x + c EGGA
c + (1− c) ELDA

c , (3.17)

where the three parameters a, b, and c are determined by fitting to experimental data. Note
that EHF

x depends on the occupied orbitals and has the expression

EHF
x = −1

2

∑

σ=↑,↓

Nσ
∑

i=1

Nσ
∑

j=1

∫∫

φ∗iσ(r1)φjσ(r1)φ
∗
jσ(r2)φiσ(r2)

|r1 − r2|
dr1dr2. (3.18)

The HF exchange energy has exactly the same form as the exact-exchange energy given in
Eq. (4.1). The notation “HF” is there to specify that the orbitals in such hybrid approximations
are optimized in the HF way and not in the OEP way (see Section 4.1), i.e. with a nonlocal HF
exchange potential instead of a local one (see Exercise 16). This constitutes a slight extension
of the usual KS method14, sometimes referred to as generalized Kohn-Sham [42].15 The main
benefit of adding a fraction of HF exchange is to decrease the self-interaction error in the
exchange functional which tends to favor too much delocalized electron densities over localized

14In fact, the possibility of combining a nonlocal Hartree-Fock potential with a local correlation potential was
mentioned already in 1965 in the paper by Kohn and Sham [10].

15Specifically, for hybrid approximations, the equation giving the ground-state energy, Eq. (1.22), now becomes:

E0 = minΦ

{

〈Φ|T̂ + V̂ne|Φ〉+ EH[nΦ] + aEHF
x [Φ] + ∆EDFA

xc [nΦ]
}

where EHF
x [Φ] is the HF exchange energy viewed

as a functional of Φ and ∆EDFA
xc [n] is the remaining (semilocal) exchange-correlation density-functional approxi-

mation.
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electron densities. The most famous and widely used three-parameter hybrid approximation is
B3LYP [43], which uses the B88 exchange functional and the LYP correlation functional, and
the parameters a = 0.20, b = 0.72, and c = 0.81.

In 1996, Becke proposed a simpler one-parameter hybrid (1H) approximation [44]

E1H
xc = a EHF

x + (1− a) EDFA
x + EDFA

c , (3.19)

where EDFA
x and EDFA

c can be any (semilocal) density-functional approximations (DFA), and the
fraction a of HF exchange has to be determined. The fraction of HF exchange should be small
enough to keep the compensation of errors usually occurring between the approximate semilocal
exchange functional EDFA

x and the approximate semilocal correlation functional EDFA
c . Fits to

experimental data often give an optimal parameter a around 0.25. A rationale has also been
proposed in favor of this value [45]. For example, PBE0 [46, 47] is a popular one-parameter
hybrid approximation which uses a = 0.25 and the PBE exchange and correlation functionals.

A strategy that has been sometimes used to construct approximations of the form of Eq. (3.19)
is to employ parameterized flexible functions for EDFA

x and EDFA
c , and systematically optimize

all the parameters (including the fraction a of HF exchange) on large sets of physicochemi-
cal properties of molecular systems. For example, the Becke 97 (B97) exchange-correlation
functional [48] is a hybrid GGA approximation containing 13 parameters optimized on atomic
exchange and correlation energies, atomization energies, ionization potentials, and proton affini-
ties. Another example is the so-called family of “Minnesota” functionals, and in particular the
M06 exchange-correlation functional [49] which is a hybrid meta-GGA approximation containing
36 parameters optimized on a very large set of diverse physicochemical properties concerning
main-group thermochemistry, reaction barrier heights, noncovalent interactions, electronic spec-
troscopy, and transition metal bonding.

Exercise 16 : Show that the functional derivative of EHF
x with respect to φ∗iσ(r) gives

δEHF
x

δφ∗iσ(r)
=

∫

vHF
x,σ(r, r

′)φiσ(r′)dr′, (3.20)

where vHF
x,σ(r, r

′) is the nonlocal HF exchange potential

vHF
x,σ(r, r

′) = −
Nσ
∑

j=1

φjσ(r)φ
∗
jσ(r

′)

|r− r′| . (3.21)

Show also that Eq. (3.20) can be reformulated in terms of a local HF exchange potential
vHF
x,iσ(r) depending on each orbital it acts on.

3.5 Double-hybrid approximations

In 2006, Grimme [50] introduced a two-parameter double-hybrid (2DH) approximation

E2DH
xc = ax E

HF
x + (1− ax) E

DFA
x + (1− ac)E

DFA
c + acE

MP2
c , (3.22)

mixing a fraction ax of the HF exchange energy with a semilocal exchange DFA, and a fraction ac
of the second-order Møller-Plesset (MP2) correlation energy EMP2

c with a semilocal correlation
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DFA. In Eq. (3.22), the first three terms are first calculated in self-consistent manner, and then
the last term EMP2

c is added perturbatively using the orbitals determined in the first step. The
expression of EMP2

c is

EMP2
c = −1

4

N
∑

i=1

N
∑

j=1

2M
∑

a=N+1

2M
∑

b=N+1

|〈ψiψj ||ψaψb〉|2
εa + εb − εi − εj

, (3.23)

where i, j and a, b run over occupied and virtual spin orbitals, respectively (there is a total of
2M spin orbitals for M spatial basis functions), εk are spin orbital energies, and 〈ψiψj ||ψaψb〉 =
〈ψiψj |ψaψb〉 − 〈ψiψj |ψbψa〉 are antisymmetrized two-electron integrals with (in physicists’ nota-
tion)

〈ψpψq|ψrψs〉 =
∫∫

ψ∗
p(x1)ψ

∗
q (x2)ψr(x1)ψs(x2)

|r1 − r2|
dx1dx2. (3.24)

The presence of nonlocal MP2 correlation allows one to use a larger fraction of nonlocal HF
exchange. For example, Grimme proposed the B2-PLYP approximation which uses the B88
exchange and LYP correlation functionals, and the parameters ax = 0.53 and ac = 0.27 optimized
on experimental heats of formation of a set of molecules.

In 2011, Sharkas, Toulouse, and Savin [51] showed how the double-hybrid approximations
can be rigorously reformulated using the adiabatic-connection formalism, which leads to a one-
parameter double-hybrid (1DH) approximation

E1DH
xc = λ EHF

x + (1− λ) EDFA
x + (1− λ2)EDFA

c + λ2EMP2
c , (3.25)

where the fraction HF exchange ax = λ is now connected to the fraction of MP2 correlation
ac = λ2. It turns out that using ax = λ = 0.53 nearly reproduces the parameter ac = λ2 =
0.28 ≈ 0.27 independently optimized in Eq. (3.22). Likewise, Fromager [52] proposed a rigorous
formulation of the two-parameter double-hybrid approximations.

The double-hybrid approximations are examples of correlation functionals depending on
virtual orbitals. Another example of a correlation functional depending on virtual orbitals is the
random-phase approximation (RPA), which goes beyond second order and has been the subject
of intensive developments since the 2000s.

3.6 Range-separated hybrid approximations

Based on earlier ideas of Savin [53], in 2001, Iikura, Tsuneda, Yanai, and Hirao [54] proposed
a long-range correction (LC) scheme

ELC
xc = Elr,HF

x + Esr,DFA
x + EDFA

c , (3.26)

where Elr,HF
x is the HF exchange energy for a long-range electron-electron interaction wlr

ee(r12) =
erf(µr12)/r12 (where r12 = |r1 − r2| is the interelectronic distance and erf is the error function,
see Exercise 17)

Elr,HF
x = −1

2

∑

σ=↑,↓

Nσ
∑

i=1

Nσ
∑

j=1

∫∫

φ∗iσ(r1)φjσ(r1)φ
∗
jσ(r2)φiσ(r2)w

lr
ee(r12)dr1dr2, (3.27)

and Esr,DFA
x is the DFA exchange energy for the complementary short-range interaction wsr

ee(r12) =
1/r12 − wlr

ee(r12). Similarly to the hybrid approximations of Section 3.4, the introduction of a
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fraction of long-range HF exchange reduces the self-interaction error (see, e.g., Ref. [55]) . In ad-
dition, the short-range exchange part is easier to approximate with semilocal DFA. In particular,
the −1/r asymptotic behavior of the exchange potential [Eq. (3.6)], which is difficult to satisfy
with DFAs, does not apply anymore to the short-range exchange potential. The parameter µ
(also sometimes denoted as ω) in the error function controls the range of the separation and must
be chosen, e.g. by fitting to experimental data. In practice, a value around µ ≈ 0.3−0.5 bohr−1

is often found to be optimal. A popular example of such LC approximations is LC-ωPBE [56]
which uses a short-range version of the PBE exchange functional, as well as the standard PBE
correlation functional. Note that the LC scheme has also been referred to as the range-separated
hybrid exchange (RSHX) scheme [57].

Exercise 17 : Using the definition of the error function

erf(x) =
2√
π

∫ x

0
e−t2dt, (3.28)

show that erf(x) ∼
x→0

(2/
√
π)x and erf(x) −−−−→

x→+∞
1. Draw then the form of the long-range

interaction erf(µr)/r as a function r for different values of the range-separation parameter:
µ = 0, µ = 1, and µ→ +∞.

In 2004, Yanai, Tew, and Handy [58], introduced a more flexible scheme called the Coulomb-
attenuating method (CAM) [58] in which fractions of HF exchange are added at both short and
long range

ECAM
xc = a Esr,HF

x + b Elr,HF
x + (1− a) Esr,DFA

x + (1− b) Elr,DFA
x + EDFA

c , (3.29)

where Esr,HF
x is the HF exchange energy for the short-range interaction wsr

ee(r12) and Elr,DFA
x

is the DFA exchange energy for the long-range interaction wlr
ee(r12). The reintroduction of HF

exchange at short range improves thermodynamic properties such as atomization energies. Ac-
cording to this scheme, the authors proposed the CAM-B3LYP approximation which uses short-
and long-range versions of the B88 exchange functional, the same correlation functional used
in B3LYP (i.e., 0.81 ELYP

c + 0.19 ELDA
c ), and optimized parameters a = 0.19, b = 0.65, and

µ = 0.33 bohr−1. Another example in this class of approximations is the ωB97X exchange-
correlation functional [59] which is based on the B97 exchange-correlation functional with re-
optimized parameters, and uses a = 0.16, b = 1, and µ = 0.3 bohr−1. Another functional
that can be considered as part of this class of approximations is the Heyd-Scuseria-Ernzerhof
(HSE) exchange-correlation functional [60], which uses the parameters a = 0.25, b = 0 (i.e. no
long-range HF exchange), and µ = 0.15 bohr−1, with a long-range version of the PBE exchange
correlation functional and the standard PBE correlation functional. The absence of HF exchange
at very long range makes this approximation particularly useful for solids.

In 2005, Ángyán, Gerber, Savin, and Toulouse [61] introduced the range-separated hybrid
(RSH) scheme

ERSH
xc = Elr,HF

x + Esr,DFA
x + Esr,DFA

c , (3.30)

which is very similar to the LC scheme except that it uses a short-range correlation DFA, Esr,DFA
c ,

instead of a standard correlation DFA, EDFA
c . The idea is that semilocal DFAs are not good

for the long-range correlation energy, and so we may as well drop the long-range part of the
correlation DFA. The long-range correlation energy can then be added in a second step, e.g., at
the second-order level which defines the RSH+MP2 scheme [61]

ERSH+MP2
xc = Elr,HF

x + Esr,DFA
x + Esr,DFA

c + Elr,MP2
c , (3.31)
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where Elr,MP2
c is the MP2 correlation energy calculated with long-range two-electron integrals

and the previously calculated RSH orbitals. The RSH+MP2 scheme is thus similar to the
double-hybrid approximations of Section 3.5 but with range separation. One of main advantages
of using a long-range MP2 correlation energy is the correct qualitative description of London
dispersion interaction energies, while displaying a fast convergence with the basis size [62]. For
more accurate results, one can go beyond second order by using long-range coupled-cluster [63]
or random-phase approximations [64–66].

3.7 Semiempirical dispersion corrections

To explicitly account for London dispersion interactions, it has been proposed in the 2000s
to add to the standard approximate functionals a semiempirical dispersion correction of the
form [67–69]

Edisp = −s
∑

α<β

f(Rαβ)
Cαβ
6

R6
αβ

, (3.32)

where Rαβ is the distance between each pair of atoms, Cαβ
6 is the dispersion coefficient between

these atoms, f(Rαβ) is a parametrized damping function which tends to 1 at large Rαβ and
tends to zero at small Rαβ , and s is a possible scaling parameter that can be adjusted for each

approximate functional. The dispersion coefficient Cαβ
6 for any pair of atoms is empirically

calculated from tabulated same-atom dispersion coefficients Cαα
6 and/or atomic polarizabilities.

This approach was named “DFT-D” by Grimme [69]. The last version of DFT-D (referred to as

DFT-D3) also includes Cαβ
8 two-body terms and Cαβγ

9 three-body terms [70]. There have also
been various proposals to make the determination of dispersion coefficients less empirical, such
as the scheme of Becke and Johnson [71] based on the exchange-hole dipole moment, the scheme
of Tkatchenko and Scheffler [72] based on a Hirshfeld atomic partitioning, or the scheme of Sato
and Nakai [73] based on the local-response approximation [74].
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4 Some less usual orbital-dependent exchange-correlation func-

tionals

We discuss here some exchange-correlation energy functionals explicitly depending on the
KS orbitals. Since the KS orbitals are themselves functionals of the density, these exchange-
correlation expressions are thus implicit functionals of the density (for notational simplicity, this
dependence on the density will not be explicitly indicated). In fact, the hybrid, double-hybrid,
and range-separated hybrid approximations of Sections 3.4, 3.5, and 3.6 already belong to this
family, with the caveat that the orbitals are usually obtained with a nonlocal potential. In this
Section, we are concerned with orbital-dependent exchange-correlation energy functionals with
orbitals obtained with a local potential. These approximations tend to be more computationally
involved than the approximations of the previous Section and are thus much less used.

4.1 Exact exchange

Being defined as an expectation value over a single-determinant wave function [see Eq. (1.26)],
the exact exchange (EXX) energy functional can be expressed in terms of the orbitals

Ex = −1

2

∑

σ=↑,↓

Nσ
∑

i=1

Nσ
∑

j=1

∫∫

φ∗iσ(r1)φjσ(r1)φ
∗
jσ(r2)φiσ(r2)

|r1 − r2|
dr1dr2, (4.1)

where i and j run over spatial occupied orbitals. The exchange energy in Eq. (4.1) has exactly
the same form as the HF exchange [Eq. (3.18)], but the orbitals used in this expression are in
general different.

Since the exact exchange energy in Eq. (4.1) is not an explicit functional of the density,
the corresponding exchange potential vx(r) = δEx/δn(r) cannot be calculated directly. We can
however find an workable equation for vx(r) by first considering the functional derivative of Ex

with respect to the KS potential vs(r) and then applying the chain rule

δEx

δvs(r)
=

∫

δEx

δn(r′)
δn(r′)
δvs(r)

dr′. (4.2)

Introducing the non-interacting KS static linear-response function χ0(r
′, r) = δn(r′)/δvs(r), we

can rewrite Eq. (4.2) as
∫

vx(r
′)χ0(r

′, r)dr′ =
δEx

δvs(r)
, (4.3)

which is known as the optimized-effective-potential (OEP) equation for the exact-exchange po-
tential. Explicit expressions in terms of the orbitals can be derived for δEx/δvs(r) and χ0(r

′, r).

Exercise 18 : Using first-order perturbation theory on the KS system, show that

δφiσ(r
′)

δvs(r)
= −

M
∑

p=1
p 6=i

φ∗pσ(r)φiσ(r)

εpσ − εiσ
φpσ(r

′). (4.4)

where the sum is over all spatial orbitals p different from orbital i but of the same spin.
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Show then that the expression of χ0(r
′, r) is

χ0(r
′, r) = −

∑

σ=↑,↓

Nσ
∑

i=1

M
∑

a=Nσ+1

φ∗iσ(r
′)φ∗aσ(r)φiσ(r)φaσ(r

′)
εaσ − εiσ

+ c.c. , (4.5)

where a runs over virtual spatial orbitals and c.c. stands for the complex conjugate. Finally,
by using the definition of Ex in terms of the orbitals, show that

δEx

δvs(r)
=
∑

σ=↑,↓

Nσ
∑

i=1

Nσ
∑

j=1

M
∑

a=Nσ+1

(φaσφjσ|φjσφiσ)
φaσ(r)φ

∗
iσ(r)

εaσ − εiσ
+ c.c. , (4.6)

where (φaσφjσ|φjσφiσ) are the two-electron integrals [see Eq. (1.48) for the definition] in the
basis of the KS spatial orbitals.

Applying this OEP method with the EXX energy (and no correlation energy functional) is
an old idea [75, 76], but reasonable efficient calculations for molecules have been possible only
relatively recently [77, 78]. The EXX occupied orbitals turn out to be very similar to the HF
occupied orbitals, and thus the EXX ground-state properties are also similar to the HF ones.
However, the EXX virtual orbitals tend to be much less diffuse than the HF virtual orbitals,
and may be more adapted for calculating excited-state properties.

4.2 Second-order Görling-Levy perturbation theory

In 1993, Görling and Levy [79, 80] developed a perturbation theory in terms of the cou-
pling constant λ of the adiabatic connection (Section 2.1.2) which provides an explicit orbital-
dependent second-order approximation for the correlation energy functional. The Hamiltonian
along the adiabatic connection [Eq. (2.18)] can be written as

Ĥλ = T̂ + λŴee + V̂ λ

= Ĥs + λ(Ŵee − V̂Hx)− V̂ λ
c , (4.7)

where Ĥs = Ĥλ=0 = T̂ + V̂s is the KS non-interacting reference Hamiltonian (which will be
assumed to have a nondegenerate ground state). Equation (4.7) was obtained by decomposing
the potential operator keeping the density constant as V̂ λ = V̂s − λV̂Hx − V̂ λ

c where V̂s = V̂ λ=0

is the KS potential operator, λV̂Hx is the Hartree-exchange potential operator which is linear in

λ, and V̂ λ
c is the correlation potential which starts at second order in λ, i.e. V̂ λ

c = λ2V̂
(2)
c + · · · .

Using a complete set of orthonormal eigenfunctions Φn and eigenvalues En of the KS Hamiltonian,
Ĥs|Φn〉 = En|Φn〉, the normalized ground-state wave function of the Hamiltonian Ĥλ can be
expanded as Ψλ = Φ + λΨ(1) + · · · where Φ = Φ0 is the ground-state KS single-determinant
wave function and Ψ(1) is its first-order correction given by

|Ψ(1)〉 = −
∑

n 6=0

〈Φn|Ŵee − V̂Hx|Φ〉
En − E0

|Φn〉. (4.8)

Using the expression in Eq. (2.23), the correlation energy functional can also be expanded
in powers of λ

Eλ
c = 〈Ψλ|T̂ + λŴee|Ψλ〉 − 〈Φ|T̂ + λŴee|Φ〉.

= E(0)
c + λE(1)

c + λ2E(2)
c + · · · . (4.9)
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Since Ψλ=0 = Φ, the zeroth-order term vanishes: E
(0)
c = 0. Using the expression of the first-

order derivative of Eλ
c with respect to λ in Eq. (2.24), i.e. ∂Eλ

c /∂λ = 〈Ψλ|Ŵee|Ψλ〉− 〈Φ|Ŵee|Φ〉,
we find that the first-order term vanishes as well: E

(1)
c = 0. The second-order term corresponds

to the second-order Görling-Levy (GL2) correlation energy and is given by

E(2)
c = EGL2

c = 〈Φ|Ŵee|Ψ(1)〉 = 〈Φ|Ŵee − V̂Hx|Ψ(1)〉, (4.10)

where the second equality comes the fact that 〈Φ|V̂Hx|Ψ(1)〉 = 0 since it is the derivative with
respect to λ at λ = 0 of 〈Ψλ|V̂Hx|Ψλ〉 =

∫

vHx(r)n(r)dr which does not depend on λ by virtue of
the fact the density n(r) is constant along the adiabatic connection. Using the last expression
in Eq. (4.10) allows one to express the GL2 correlation energy as

EGL2
c = −

∑

n 6=0

|〈Φ|Ŵee − V̂Hx|Φn〉|2
En − E0

. (4.11)

It is instructive to decompose the GL2 correlation energy as

EGL2
c = EMP2

c + ES
c , (4.12)

where EMP2
c is a MP2-like correlation energy evaluated with KS spin orbitals

EMP2
c = −1

4

N
∑

i=1

N
∑

j=1

2M
∑

a=N+1

2M
∑

b=N+1

|〈ψiψj ||ψaψb〉|2
εa + εb − εi − εj

, (4.13)

and ES
c is the contribution coming from the single excitations (which does not vanish here,

contrary to HF-based MP2 perturbation theory)

ES
c = −

N
∑

i=1

2M
∑

a=N+1

|〈ψi|V̂ HF
x − V̂x|ψa〉|2
εa − εi

, (4.14)

involving the difference between the integrals over the nonlocal HF exchange potential 〈ψi|V̂ HF
x |ψa〉 =

−∑N
j=1〈ψiψj |ψjψa〉 and over the local KS exchange potential 〈ψi|V̂x|ψa〉 =

∫

ψ∗
i (x)vx(r)ψa(x)dx.

Exercise 19 : Derive Eqs. (4.12)-(4.14).

Calculations of the GL2 correlation energy using either a non-self-consistent post-EXX im-
plementation or a more complicated OEP self-consistent procedure have been tested (see, e.g.,
Refs. [81–83]) but the results are often disappointing. It is preferable to go beyond second or-
der with the random-phase approximation in the adiabatic-connection fluctuation-dissipation
approach.

4.3 Adiabatic-connection fluctuation-dissipation approach

4.3.1 Exact adiabatic-connection fluctuation-dissipation expression

Using the adiabatic-connection formula of Eq. (2.25), the correlation energy functional can
be written as

Ec =

∫ 1

0
dλ 〈Ψλ|Ŵee|Ψλ〉 − 〈Φ|Ŵee|Φ〉

=
1

2

∫ 1

0
dλ

∫∫

nλ2,c(r1, r2)

|r1 − r2|
dr1dr2, (4.15)
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where nλ2,c(r1, r2) = nλ2(r1, r2) − n2,KS(r1, r2) is the correlation part of the pair density along

the adiabatic connection. The pair density nλ2(r1, r2) can be expressed with the pair-density
operator n̂2(r1, r2) [Eq. (A.10)]

nλ2(r1, r2) = 〈Ψλ|n̂2(r1, r2)|Ψλ〉 = 〈Ψλ|n̂(r2)n̂(r1)|Ψλ〉 − δ(r1 − r2)〈Ψλ|n̂(r1)|Ψλ〉, (4.16)

where n̂(r) is the density operator [Eq. (A.8)], and the KS pair density n2,KS(r1, r2) simply
corresponds to the case λ = 0

n2,KS(r1, r2) = nλ=0
2 (r1, r2) = 〈Φ|n̂(r2)n̂(r1)|Φ〉 − δ(r1 − r2)〈Φ|n̂(r1)|Φ〉, (4.17)

Since the density does not change with λ, i.e. 〈Ψλ|n̂(r)|Ψλ〉 = 〈Φ|n̂(r)|Φ〉 = n(r), the correlation
pair density needed in Eq. (4.15) can thus be expressed as

nλ2,c(r1, r2) = 〈Ψλ|n̂(r2)n̂(r1)|Ψλ〉 − 〈Φ|n̂(r2)n̂(r1)|Φ〉. (4.18)

We would like to calculate nλ2,c(r1, r2) without having to calculate the complicated many-

body wave function Ψλ. For this, we consider the (time-ordered) linear-response function along
the adiabatic connection16

iχλ(r1t1, r2t2) = 〈Ψλ|T [n̂λ(r1t1)n̂λ(r2t2)]|Ψλ〉 − 〈Ψλ|n̂λ(r1t1)|Ψλ〉〈Ψλ|n̂λ(r2t2)|Ψλ〉
= 〈Ψλ|T [n̂λ(r1t1)n̂λ(r2t2)]|Ψλ〉 − 〈Ψλ|n̂(r1)|Ψλ〉〈Ψλ|n̂(r2)|Ψλ〉, (4.19)

where n̂λ(rt) = eiĤ
λtn̂(r)e−iĤλt is the density operator in the Heisenberg picture, and T is

the Wick time-ordering operator which orders the operators with larger times on the left, i.e.
T [n̂λ(r1t1)n̂

λ(r2t2)] = θ(t1 − t2)n̂
λ(r1t1)n̂

λ(r2t2) + θ(t2 − t1)n̂
λ(r2t2)n̂

λ(r1t1) where θ is the
Heaviside step function. Due to time translation invariance, the linear-response function depends
in fact only on τ = t1 − t2. If we set t2 = t1 + 0+ where 0+ is an infinitesimal positive shift, i.e.
τ = 0−, we get

iχλ(r1, r2; τ = 0−) = 〈Ψλ|n̂(r2)n̂(r1)|Ψλ〉 − 〈Ψλ|n̂(r1)|Ψλ〉〈Ψλ|n̂(r2)|Ψλ〉, (4.20)

and, similarly, for the non-interacting KS linear-response function corresponding to the case
λ = 0

iχ0(r1, r2; τ = 0−) = 〈Φ|n̂(r2)n̂(r1)|Φ〉 − 〈Φ|n̂(r1)|Φ〉〈Φ|n̂(r2)|Φ〉. (4.21)

We can thus express nλ2,c(r1, r2) as the difference between the zero-time linear-response functions

nλ2,c(r1, r2) = i[χλ(r1, r2; τ = 0−)− χ0(r1, r2; τ = 0−)]. (4.22)

Alternatively, Eq (4.22) can be rewritten in terms of the Fourier transforms of the linear-response
functions, using the definition χλ(r1, r2; τ) =

∫ +∞
−∞ dω/(2π)χλ(r1, r2;ω)e

−iωτ ,

nλ2,c(r1, r2) = −
∫ +∞

−∞

dω

2πi
eiω0

+
[χλ(r1, r2;ω)− χ0(r1, r2;ω)], (4.23)

which is known as the (zero-temperature) fluctuation-dissipation theorem. This theorem relates
ground-state correlations in the time-independent system, nλ2,c(r1, r2), to the linear response of
the system due to a time-dependent external perturbation, χλ(r1, r2;ω).

16We choose to work with the time-ordered linear-response function (or polarization propagator) which is used in
many-body Green function theory. In linear-response time-dependent DFT, one normally uses the retarded linear-
response function iχR

λ (r1t1, r2t2) = θ(t1 − t2)〈Ψ
λ|[n̂λ(r1t1), n̂

λ(r2t2)]|Ψ
λ〉 − 〈Ψλ|n̂λ(r1t1)|Ψ

λ〉〈Ψλ|n̂λ(r2t2)|Ψ
λ〉.

Their Fourier transforms are related by χR
λ (r1, r2;ω) = χλ(r1, r2;ω) for ω ≥ 0, and χR

λ (r1, r2;ω) = χλ(r1, r2;ω)
∗

for ω < 0. One should be careful to be consistent when switching between these related quantities. For example,
the fluctuation-dissipation theorem of Eq. (4.23) takes a slightly different form in terms of χR

λ (r1, r2;ω).
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Exercise 20 : Show that the linear-response function can be rewritten as

iχλ(r1, r2; τ) = θ(τ)
∑

n 6=0

〈Ψλ|n̂(r1)|Ψλ
n〉〈Ψλ

n|n̂(r2)|Ψλ〉e−iωλ
nτ

+θ(−τ)
∑

n 6=0

〈Ψλ|n̂(r2)|Ψλ
n〉〈Ψλ

n|n̂(r1)|Ψλ〉eiωλ
nτ , (4.24)

where the sums are over all eigenstates Ψλ
n of the Hamiltonian Ĥλ, i.e. Ĥλ|Ψλ

n〉 = Eλ
n |Ψλ

n〉,
except the ground state Ψλ = Ψλ

0 , and ωλ
n = Eλ

n − Eλ
0 are the corresponding excitation

energies. Show then that the Fourier transform of χλ(r1, r2; τ) is

χλ(r1, r2;ω) =
∑

n 6=0

〈Ψλ|n̂(r1)|Ψλ
n〉〈Ψλ

n|n̂(r2)|Ψλ〉
ω − ωλ

n + i0+
− 〈Ψλ|n̂(r2)|Ψλ

n〉〈Ψλ
n|n̂(r1)|Ψλ〉

ω + ωλ
n − i0+

, (4.25)

which is called the Lehmann representation of χλ. Finally, check directly Eq. (4.23) by
performing the integration over ω using the residue theorem.

Combining Eqs. (4.15) and (4.23), we finally arrive the exact adiabatic-connection fluctuation-

dissipation (ACFD) formula for the correlation energy

Ec = −1

2

∫ 1

0
dλ

∫ +∞

−∞

dω

2πi
eiω0

+

∫∫

χλ(r1, r2;ω)− χ0(r1, r2;ω)

|r1 − r2|
dr1dr2. (4.26)

The usefulness of the ACFD formula is due to the fact there are practical ways of directly
calculating χλ(r1, r2;ω) without having to calculate the many-body wave function Ψλ. In linear-
response time-dependent DFT, one can find a Dyson-like equation for χλ(r1, r2;ω)

χλ(r1, r2;ω) = χ0(r1, r2;ω) +

∫∫

χ0(r1, r3;ω)f
λ
Hxc(r3, r4;ω)χλ(r4, r2;ω)dr3dr4, (4.27)

where fλHxc(r3, r4;ω) is the Hartree-exchange-correlation kernel associated to the Hamiltonian
Ĥλ. Here, Eq. (4.27) will be considered as the definition for fλHxc. In principle, the exact
correlation energy can be obtained with Eqs. (4.26) and (4.27). In practice, however, we need
to use an approximation for fλHxc.

4.3.2 Direct random-phase approximation

In the direct random-phase approximation (dRPA, also just referred to as RPA, or some-
times as time-dependent Hartree), only the Hartree part of the kernel, which is linear in λ and
independent from ω, is retained

fλHxc(r1, r2;ω) ≈ fλH(r1, r2) = λwee(r1, r2), (4.28)

where wee(r1, r2) = 1/|r1 − r2| is the Coulomb interaction, and the corresponding dRPA linear-
response function then satisfies the equation

χdRPA
λ (r1, r2;ω) = χ0(r1, r2;ω) + λ

∫∫

χ0(r1, r3;ω)wee(r3, r4)χ
dRPA
λ (r4, r2;ω)dr3dr4. (4.29)

35



The physical contents of this approximation can be seen by iterating Eq. (4.29) which generates
an infinite series

χdRPA
λ (r1, r2;ω) = χ0(r1, r2;ω) + λ

∫∫

χ0(r1, r3;ω)wee(r3, r4)χ0(r4, r2;ω)dr3dr4

+λ2
∫∫∫∫

χ0(r1, r3;ω)wee(r3, r4)χ0(r4, r5;ω)wee(r5, r6)χ0(r6, r2;ω)dr3dr4dr5dr6 + · · · ,

(4.30)

which, after plugging it into Eq. (4.26), leads to the dRPA correlation energy as the following
perturbation expansion

EdRPA
c = −1

2

∫ 1

0
dλ

∫ +∞

−∞

dω

2πi
eiω0

+

[

λ

∫∫∫∫

χ0(r1, r3;ω)χ0(r4, r2;ω)

|r1 − r2| |r3 − r4|
dr1dr2dr3dr4

+λ2
∫∫∫∫∫∫

χ0(r1, r3;ω)χ0(r4, r5;ω)χ0(r6, r2;ω)

|r1 − r2| |r3 − r4| |r5 − r6|
dr1dr2dr3dr4dr5dr6 + · · ·

]

. (4.31)

Using now the Lehmann representation [Eq. (4.25)] of the KS linear-response function in terms
of the KS orbitals and their energies

χ0(r1, r2;ω) =
∑

σ=↑,↓

Nσ
∑

i=1

M
∑

a=Nσ+1

[

φ∗iσ(r1)φaσ(r1)φ
∗
aσ(r2)φiσ(r2)

ω − (εa − εi) + i0+
− φ∗iσ(r2)φaσ(r2)φ

∗
aσ(r1)φiσ(r1)

ω + (εa − εi)− i0+

]

,

(4.32)

one can obtain, after quite some work,

EdRPA
c = −1

2

N
∑

i=1

N
∑

j=1

2M
∑

a=N+1

2M
∑

b=N+1

|〈ψiψj |ψaψb〉|2
εa + εb − εi − εj

+
N
∑

i=1

N
∑

j=1

N
∑

k=1

2M
∑

a=N+1

2M
∑

b=N+1

2M
∑

c=N+1

〈ψiψj |ψaψb〉〈ψjψk|ψbψc〉〈ψkψi|ψcψa〉
(εa + εb − εi − εj)(εa + εc − εi − εk)

+ · · · .

(4.33)

The dRPA correlation energy is the sum of all the direct terms (i.e., no exchange terms) of the
Møller-Plesset or Görling-Levy perturbation expansion. Of course, Eq. (4.33) is not the way
to calculate the dRPA correlation energy in practice. To do this, we need to solve the Dyson
equation [Eq. (4.29)] without explicitly expanding in powers of λ.

4.3.3 Practical calculation in a spin orbital basis

For solving Eq. (4.29) in a spin orbital basis, it is more convenient to introduce the four-point
(time-ordered) linear-response function

iχλ(x1,x2;x
′
1,x

′
2; τ = t1 − t2) = 〈Ψλ|T [n̂λ1(x1,x

′
1; t1)n̂

λ
1(x2,x

′
2; t2)]|Ψλ〉

−〈Ψλ|n̂λ1(x1,x
′
1; t1)|Ψλ〉〈Ψλ|n̂λ1(x2,x

′
2; t2)|Ψλ〉, (4.34)

where n̂λ1(x,x
′; t) = eiĤ

λtn̂1(x,x
′)e−iĤλt is the (spin-dependent) one-electron density matrix

operator in the Heisenberg picture. The Fourier transform of the linear-response function
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χλ(r1, r2;ω) involved in Eq. (4.26) is just the spin-summed diagonal part of the Fourier transform
of the four-point linear-response function

χλ(r1, r2;ω) =
∑

σ1=↑,↓

∑

σ2=↑,↓
χλ(r1σ1, r2σ2; r1σ1, r2σ2;ω). (4.35)

In the dRPA approximation, the four-point linear-response function is given by

χdRPA
λ (x1,x2;x

′
1,x

′
2;ω) = χ0(x1,x2;x

′
1,x

′
2;ω)

+

∫∫∫∫

dx3dx4dx5dx6 χ0(x1,x4;x
′
1,x3;ω)f

λ
H(x3,x6;x4,x5)χ

dRPA
λ (x5,x2;x6,x

′
2;ω), (4.36)

with the four-point Hartree kernel fλH(x1,x2;x
′
1,x

′
2) = λwee(|r1 − r2|)δ(x1 − x′

1)δ(x2 − x′
2), or

equivalently in terms of inverses

(χdRPA
λ )−1(x1,x2;x

′
1,x

′
2;ω) = χ−1

0 (x1,x2;x
′
1,x

′
2;ω)− fλH(x1,x2;x

′
1,x

′
2). (4.37)

The non-interacting four-point linear-response function can be explicitly written in terms of the
KS spin orbitals and their energies

χ0(x1,x2;x
′
1,x

′
2;ω) =

N
∑

i=1

2M
∑

a=N+1

[

ψ∗
i (x

′
1)ψa(x1)ψ

∗
a(x

′
2)ψi(x2)

ω − (εa − εi) + i0+
− ψ∗

i (x
′
2)ψa(x2)ψ

∗
a(x

′
1)ψi(x1)

ω + (εa − εi)− i0+

]

,

(4.38)

which can be seen as expanded in a basis, χ0(x1,x2;x
′
1,x

′
2;ω) =

∑

p,q[χ0(ω)]p,qfp(x1,x
′
1)f

∗
q (x

′
2,x2),

where the basis functions are tensor products of two occupied/virtual (ov) fia(x1,x
′
1) = ψ∗

i (x
′
1)ψa(x1)

or two virtual/occupied (vo) spin orbitals fai(x1,x
′
1) = ψ∗

a(x
′
1)ψi(x1), and the matrix of χ0(ω) is

in fact diagonal: [χ0(ω)]ia,jb = δijδab/(ω−(εa−εi)+i0+), [χ0(ω)]ai,bj = δijδab/(ω+(εa−εi)−i0+),
and [χ0(ω)]ia,bj = [χ0(ω)]ai,jb = 0. The inverse of χ0(ω) in this basis is, written with ov/ov,
ov/vo, vo/ov, ov/ov block matrices,

χ
−1
0 (ω) = −

[(

∆ε 0

0 ∆ε

)

− ω

(

1 0

0 −1

)]

, (4.39)

with the diagonal matrix ∆εia,jb = (εa − εi)δijδab. Using Eq. (4.37), the matrix representation
of the inverse of χdRPA

λ (ω) can be easily find

(χdRPA
λ )−1(ω) = −

[(

Aλ Bλ

B∗
λ A∗

λ

)

− ω

(

1 0

0 −1

)]

, (4.40)

with the matrices Aλ and Bλ defined by

(Aλ)ia,jb = ∆εia,jb + λ〈ψaψj |ψiψb〉, (4.41a)

(Bλ)ia,jb = λ〈ψaψb|ψiψj〉, (4.41b)

and it can be checked that the matrix Aλ is Hermitian [i.e., (Aλ)jb,ia = (Aλ)
∗
ia,jb] and the

matrix Bλ is symmetric [i.e, (Bλ)jb,ia = (Bλ)ia,jb]. To calculate the inverse of the matrix in the
right-hand-side of Eq. (4.40), we then consider the following generalized eigenvalue equation

(

Aλ Bλ

B∗
λ A∗

λ

)(

Xn,λ

Yn,λ

)

= ωλ
n

(

1 0

0 −1

)(

Xn,λ

Yn,λ

)

, (4.42)

37



whose solutions come in pairs: if (Xn,λ,Yn,λ) is an eigenvector with eigenvalue ωλ
n, then it is

easy to check that (Y∗
n,λ,X

∗
n,λ) is also an eigenvector with opposite eigenvalue −ωλ

n. Choosing

the normalization of the eigenvectors so that X†
n,λXm,λ−Y

†
n,λYm,λ = δnm, the matrix χ

dRPA
λ (ω)

can be expressed as the following spectral representation

χ
dRPA
λ (ω) =

∑

n

[

1

ω − ωλ
n + i0+

(

Xn,λ

Yn,λ

)

(

X
†
n,λ Y

†
n,λ

)

− 1

ω + ωλ
n − i0+

(

Y∗
n,λ

X∗
n,λ

)

(

Y
∗†
n,λ X

∗†
n,λ

)

]

, (4.43)

where the sum is over eigenvectors with positive eigenvalues. The fluctuation-dissipation theorem
[Eq. (4.23)] leads to the matrix representation of the correlation part of the dRPA two-particle

density matrix n
λ,dRPA
2,c (using contour integration in the upper half of the complex plane)

n
λ,dRPA
2,c = −

∫ +∞

−∞

dω

2πi
eiω0

+
[χλ(ω)− χ0(ω)]

=
∑

n

(

Y∗
n,λY

∗†
n,λ Y∗

n,λX
∗†
n,λ

X∗
n,λY

∗†
n,λ X∗

n,λX
∗†
n,λ

)

−
(

0 0

0 1

)

, (4.44)

the simple contribution coming from χ0(ω) resulting from its diagonal form, and the dRPA
correlation energy has then the following expression

EdRPA
c =

1

2

∫ 1

0
dλ

N
∑

i=1

N
∑

j=1

2M
∑

a=N+1

2M
∑

b=N+1

∑

n

{

〈ψiψb|ψaψj〉(Yn,λ)∗ia(Yn,λ)jb

+〈ψiψj |ψaψb〉(Yn,λ)∗ia(Xn,λ)jb + 〈ψaψb|ψiψj〉(Xn,λ)
∗
ia(Yn,λ)jb

+〈ψaψj |ψiψb〉 [(Xn,λ)
∗
ia(Xn,λ)jb − δijδab]

}

. (4.45)

For real-valued spin orbitals, the correlation energy can be simplified to

EdRPA
c =

1

2

∫ 1

0
dλ

N
∑

i=1

N
∑

j=1

2M
∑

a=N+1

2M
∑

b=N+1

〈ψiψb|ψaψj〉(Pc,λ)ia,jb, (4.46)

where

(Pc,λ)ia,jb =
∑

n

(Xn,λ + Yn,λ)ia (Xn,λ + Yn,λ)jb − δijδab, (4.47)

or, in matrix form,

Pc,λ =
∑

n

(Xn,λ +Yn,λ) (Xn,λ +Yn,λ)
T − 1. (4.48)

Using the fact that, if Aλ+Bλ and Aλ−Bλ are positive definite, the non-Hermitian eigenvalue
equation (4.42) with real spin orbitals can be transformed into the following half-size symmetric
eigenvalue equation

MλZn,λ = (ωλ
n)

2Zn,λ, (4.49)

where Mλ = (Aλ −Bλ)
1/2 (Aλ +Bλ) (Aλ −Bλ)

1/2 and with eigenvectors

Zn,λ =
√

ωλ
n (Aλ −Bλ)

−1/2 (Xn,λ +Yn,λ), and using the spectral decomposition M
−1/2
λ =
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∑

n(ω
λ
n)

−1Zn,λZ
T
n,λ, the correlation two-particle density matrix Pc,λ can be finally expressed

as

Pc,λ = (Aλ −Bλ)
1/2

M
−1/2
λ (Aλ −Bλ)

1/2 − 1. (4.50)

In practice, the integration over λ in Eq. (4.46) is done by numerical integration.

This is the adiabatic-connection formulation of dRPA. There also other equivalent formu-
lations of dRPA in which the integration over λ is done analytically: the plasmon-formula

formulation, the ring coupled-cluster formulation, and the dielectric-matrix formulation. For
more details about all the different formulations, see e.g. Refs. [66, 84–89].

Most dRPA correlation energy (combined with the EXX energy) calculations are done in
a non-self-consistent way but self-consistent OEP dRPA calculations have also recently been
performed [90, 91]. One of the main advantage of dRPA is that it accounts for van der Waals
dispersion interactions, and it can somewhat deals with systems with static correlation. However,
it shows large self-interaction errors. To overcome the latter drawback, the exchange contribution
to the kernel need to be included.

4.3.4 Random-phase approximation with exchange and beyond

The next logical improvement over dRPA is then to include exchange terms by adding the
EXX kernel which is also linear in λ but depends on the frequency

fλHxc(r1, r2;ω) ≈ fλHx(r1, r2;ω) = λwee(r1, r2) + λfx(r1, r2;ω), (4.51)

and the corresponding RPAx(EXX) [92–95] linear-response function satisfies the Dyson equation

χ
RPAx(EXX)
λ (r1, r2;ω) = χ0(r1, r2;ω) +

∫∫

χ0(r1, r3;ω)f
λ
Hx(r3, r4;ω)χ

RPAx(EXX)
λ (r4, r2;ω)dr3dr4.

(4.52)

Alternatively, one can define a RPAx(HF) [64,86] approximation at the level of the four-point
linear-response function

χ
RPAx(HF)
λ (x1,x2;x

′
1,x

′
2;ω) = χ0(x1,x2;x

′
1,x

′
2;ω)

+

∫∫∫∫

dx3dx4dx5dx6 χ0(x1,x4;x
′
1,x3;ω)f

λ,HF
Hx (x3,x6;x4,x5)χ

RPAx(HF)
λ (x5,x2;x6,x

′
2;ω),

(4.53)

with the four-point Hartree-Fock kernel fλ,HF
Hx (x1,x2;x

′
1,x

′
2) = λwee(|r1 − r2|)[δ(x1 − x′

1)δ(x2 −
x′
2)− δ(x1−x′

2)δ(x2−x′
1)] which is linear in λ but independent from the frequency ω. However,

contrary to the dRPA case, Eqs. (4.52) and (4.53) do not lead to the same correlation energies.
Moreover, several non-equivalent correlation energies can be extracted from Eq. (4.53) [87].

In practice, these diverse RPAx variants does not always improve over dRPA. Going beyond
RPAx by also including a correlation kernel is an active area of research (see e.g. Ref. [96]).
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Appendices

A The Hamiltonian in second quantization

It is convenient to express the Hamiltonian operator in second quantization. In this for-
malism, the operators are independent from the number of electrons (i.e., we work in Fock
space).

In real-space second quantization, the electronic Hamiltonian operator is written as

Ĥ = T̂ + Ŵee + V̂ne, (A.1)

where T̂ is the kinetic-energy operator

T̂ = −1

2

∑

σ=↑,↓

∫

ψ̂†
σ(r)∇2ψ̂σ(r)dr, (A.2)

Ŵee is the electron-electron interaction operator

Ŵee =
1

2

∑

σ1=↑,↓

∑

σ2=↑,↓

∫∫

ψ̂†
σ2
(r2)ψ̂

†
σ1
(r1)wee(r1, r2)ψ̂σ1(r1)ψ̂σ2(r2)dr1dr2, (A.3)

with wee(r1, r2) = 1/|r1 − r2|, and V̂ne is the nuclei-electron interaction operator

V̂ne =
∑

σ=↑,↓

∫

ψ̂†
σ(r)vne(r)ψ̂σ(r)dr. (A.4)

In these expressions, ψ̂†
σ(r) and ψ̂σ(r) are the creation and annihilation field operators, respec-

tively, which obey Fermionic anticommutation rules
{

ψ̂†
σ(r), ψ̂

†
σ′(r

′)
}

= 0, (A.5)

{

ψ̂σ(r), ψ̂σ′(r′)
}

= 0, (A.6)

{

ψ̂†
σ(r), ψ̂σ′(r′)

}

= δ(r− r′)δσσ′ . (A.7)

It is also convenient to define the density operator

n̂(r) =
∑

σ=↑,↓
ψ̂†
σ(r)ψ̂σ(r), (A.8)

the one-particle density-matrix operator

n̂1(r, r
′) =

∑

σ=↑,↓
ψ̂†
σ(r

′)ψ̂σ(r), (A.9)

and the pair-density operator

n̂2(r1, r2) =
∑

σ1=↑,↓

∑

σ2=↑,↓
ψ̂†
σ2
(r2)ψ̂

†
σ1
(r1)ψ̂σ1(r1)ψ̂σ2(r2)

= n̂(r2)n̂(r1)− n̂(r1)δ(r1 − r2),

= n̂(r1)n̂(r2)− n̂(r1)δ(r1 − r2), (A.10)
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so that Eqs. (A.2), (A.3), and (A.4) can be rewritten in a more compact way

T̂ = −1

2

∫

[

∇2
rn̂1(r, r

′)
]

r′=r
dr, (A.11)

Ŵee =
1

2

∫∫

wee(r1, r2)n̂2(r1, r2)dr1dr2, (A.12)

V̂ne =

∫

vne(r)n̂(r)dr. (A.13)

We can also use the second-quantization formalism in an orthonormal spin-orbital basis
{ψp(x)} where x = (r, σ). For this, we expand the field operators as

ψ̂†
σ(r) =

∑

p

ψ∗
p(x)â

†
p, (A.14)

and
ψ̂σ(r) =

∑

p

ψp(x)âp, (A.15)

where â†p and âp are the creation and annihilation operators in this basis, which still obey

anticommutation rules: {â†p, â†q} = {âp, âq} = 0 and {â†p, âq} = δpq. The expressions of the
operators are then

T̂ =
∑

pq

tpq â
†
pâq, (A.16)

Ŵee =
1

2

∑

pqrs

〈ψpψq|ψrψs〉 â†pâ†qâsâr, (A.17)

V̂ne =
∑

pq

vne,pq â
†
pâq, (A.18)

where tpq and vne,pq are the one-electron kinetic and nuclei-electron integrals, respectively, and
〈ψpψq|ψrψs〉 are the two-electron integrals.
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B A brief introduction to functional calculus

This section is inspired from Appendix A of Ref. [1] to which the reader is referred for more
details.

A function f is a mapping from a number x to another number f(x), i.e. x→ f(x). Similarly,
a functional F is a mapping from a function f to a number F [f ], i.e. f → F [f ]. In other words,
a functional is a function of a function.

The differential of a functional F [f ] is δF [f ] = F [f + δf ]− F [f ], where δf is a infinitesimal
variation of f . It represents the infinitesimal variation of F [f ] due to an infinitesimal variation
of f . The infinitesimal variation δF [f ] is linear in δf(x) at any point x

δF [f ] =

∫

δF [f ]

δf(x)
δf(x)dx, (B.1)

which defines the functional derivative of F [f ] with respect f(x), denoted by δF [f ]/δf(x). The
functional derivative generalizes the concept of partial derivative. Indeed, if we consider a func-
tion F (f1, f2, ...) of several variables f1, f2, ..., then the differential of F is dF =

∑

i ∂F/∂fi dfi,
which is the analog of Eq. (B.1). Thus, δF [f ]/δf(x) is the analog of ∂F/∂fi for the case of an
infinitely continuous number of variables.

Functional derivatives shares most of the properties of ordinary derivatives. The functional
derivative of a linear combination of functionals c1F [f ] + c2G[f ] is

δ

δf(x)
(c1F [f ] + c2G[f ]) = c1

δF [f ]

δf(x)
+ c2

δG[f ]

δf(x)
. (B.2)

The functional derivative of a product of two functionals F [f ]G[f ] is

δ

δf(x)
(F [f ]G[f ]) =

δF [f ]

δf(x)
G[f ] + F [f ]

δG[f ]

δf(x)
. (B.3)

A functional F [f ] of a function f [g](x) which is itself a functional of a function g(x) has a
functional derivative with respect to g(x) given by the chain rule

δF [f ]

δg(x)
=

∫

δF [f ]

δf(x′)
δf(x′)
δg(x)

dx′. (B.4)

It is the analog of the chain rule for a function F (f1, f2, ...) of several variables fi(g1, g2, ...) which
are themselves functions of other variables g1, g2, ..., i.e. ∂F/∂gi =

∑

j(∂F/∂fj)(∂fj/∂gi).

An important special case is when the functional F (f(x)) is just an ordinary function of
f(x). The functional derivative of F (f(x)) with respect to f(x′) is

δF (f(x))

δf(x′)
=

dF (f(x))

df
δ(x− x′), (B.5)

where dF/df is the ordinary derivative of the function F and δ(x−x′) is the Dirac delta function.
In particular, if F (f(x)) = f(x), we have

δf(x)

δf(x′)
= δ(x− x′). (B.6)
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Also, if f(x) is a functional of g(x), the chain rule (B.4) and Eq. (B.6) give

δf(x)

δf(x′)
=

∫

δf(x)

δg(x′′)
δg(x′′)
δf(x′)

dx′′ = δ(x− x′), (B.7)

which permits one to interpret δg/δf as the inverse of δf/δg. Eq. (B.7) is analogous to the
matrix relation:

∑

k(A)ik(A
−1)kj = δij .

Higher-order functional derivatives can also be defined. For example, the second-order
functional derivative δ2F [f ]/δf(x)δf(x′) is the define as the first-order functional derivative
of δF [f ]/δf(x) with respect to f(x′). The order of differentiation is usually irrelevant

δ2F [f ]

δf(x)δf(x′)
=

δ2F [f ]

δf(x′)δf(x)
. (B.8)

These functional derivatives can be used to expand a functional in a Taylor series

F [f +∆f ] = F [f ] +

∫

δF [f ]

δf(x)
∆f(x)dx+

1

2

∫∫

δ2F [f ]

δf(x)δf(x′)
∆f(x)∆f(x′)dxdx′ + ..., (B.9)

where ∆f is a finite change in f .

Finally, consider the following frequently occurring semilocal form for the functional F [f ]
depending on a function f(x) and its first-order derivative f ′(x) = df(x)/dx

F [f ] =

∫

h(f(x), f ′(x))dx, (B.10)

where h is some function and f(x) vanishes at the boundary of x. The differential of F [f ] can
be written as

δF [f ] =

∫

δh(f(x), f ′(x))dx =

∫
[

∂h(f(x), f ′(x))
∂f

δf(x) +
∂h(f(x), f ′(x))

∂f ′
δf ′(x)

]

dx. (B.11)

Using now δf ′(x) = δ[f(x+ ε)− f(x)]/ε = [δf(x+ ε)− δf(x)]/ε = (δf(x))′ (with ε → 0), and
integrating by parts the second term in Eq. (B.11) gives

δF [f ] =

∫
[

∂h(f(x), f ′(x))
∂f

δf(x)− d

dx

(

∂h(f(x), f ′(x))
∂f ′

)

δf(x)

]

dx, (B.12)

where we have used that δf(x) mush vanish on the boundary so that the boundary term of the
integration by parts vanishes. Comparing Eq. (B.12) with Eq. (B.1) shows that the functional
derivative of F [f ] is

δF [f ]

δf(x)
=
∂h(f(x), f ′(x))

∂f
− d

dx

(

∂h(f(x), f ′(x))
∂f ′

)

. (B.13)

Exercise 21 : Generalize Eq. (B.13) to a semilocal functional F depending up to on n-order
derivatives of f

F [f ] =

∫

h(f(x), f ′(x), f ′′(x), ..., f (n)(x))dx, (B.14)

where f (n)(x) = dnf(x)/dxn.

43



44



Solutions to the exercises

Exercise 1

For the special case of Coulombic potentials of the form vne(r) = −∑α Zα/|r − Rα|, it is easy to see
that the ground-state density n0(r) determines the parameters of the potential. Indeed, the locations
of the local maxima of n0(r) give the positions of the nuclei rmax = Rα, and the electron-nucleus cusp
condition at each nucleus, (∂n̄0(rα)/∂rα)rα=0 = −2Zαn̄0(0) where n̄0(rα) is the spherical average of the
density around the nucleus α (rα = |r − Rα|), gives the nucleus charge Zα. Moreover, the integral of
the density gives the number of electrons,

∫

n0(r)dr = N . It is important to realize however that the
Hohenberg-Kohn theorem is much more general than that since it states that the ground-state density
determines the potential for any form of the potential.

Exercise 2

Let n0 be a ground-state density associated with the potential vne(r) and let Ψ[n0] be a corresponding
ground-state wave function. Let n be a ground-state density associated with another potential v(r) and
let Ψ[n] be a corresponding ground-state wave function. The variational property of the Hohenberg-Kohn
density functional E[n] directly follows from the variational theorem on wave functions:

E0 = E[n0] = F [n0] +

∫

vne(r)n0(r)dr

= 〈Ψ[n0]|T̂ + Ŵee + V̂ne|Ψ[n0]〉
≤ 〈Ψ[n]|T̂ + Ŵee + V̂ne|Ψ[n]〉

= F [n] +

∫

vne(r)n(r)dr = E[n], (S.1)

establishing Eq. (1.16).

Exercise 3

Let us consider a variation of the density δn, the induced variation of the Hartree energy functional
[Eq. (1.24)] is:

δEH[n] =
1

2

∫∫

δn(r1)n(r2)

|r1 − r2|
dr1dr2 +

1

2

∫∫

n(r1)δn(r2)

|r1 − r2|
dr1dr2

=
1

2

∫
[
∫

n(r2)

|r1 − r2|
dr2

]

δn(r1)dr1 +
1

2

∫
[
∫

n(r1)

|r1 − r2|
dr1

]

δn(r2)dr2

=

∫
[
∫

n(r2)

|r1 − r2|
dr2

]

δn(r1)dr1, (S.2)

which, according to Eq. (B.1), allows us to identify the functional derivative of EH[n]

vH(r1) =
δEH[n]

δn(r1)
=

∫

n(r2)

|r1 − r2|
dr2. (S.3)

Exercise 4

We start from the expression of the density in Eq. (1.29) and insert the expansion of φi(r) in terms of
basis functions [Eq. (1.41)]

n(r) =
N
∑

i=1

|φi(r)|2 =
N
∑

i=1

φi(r)φ
∗
i (r)

=

N
∑

i=1

(

M
∑

γ=1

cγi χγ(r)

)(

M
∑

λ=1

c∗λi χ
∗
λ(r)

)

=
M
∑

γ=1

M
∑

λ=1

Pγλχγ(r)χ
∗
λ(r), (S.4)
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where Pγλ =
∑N

i=1 cγic
∗
λi. The second equality in Eq. (1.46) is then found by inserting the expression of

the Hartree potential vH [Eq. S.3] and using Eq. (S.4)

Jµν =

∫

χ∗
µ(r1)vH(r1)χν(r1)dr1

=

∫∫

χ∗
µ(r1)

n(r2)

|r1 − r2|
χν(r1)dr1dr2

=

M
∑

γ=1

M
∑

λ=1

Pγλ

∫∫

χ∗
µ(r1)χγ(r2)χ

∗
λ(r2)χν(r1)

|r1 − r2|
dr1dr2

=

M
∑

λ=1

M
∑

γ=1

Pγλ(χµχν |χλχγ), (S.5)

where (χµχν |χλχγ) are the two-electron integrals defined in Eq. (1.48).

Exercise 5

Since the ↑- and ↓-spin electrons are uncoupled in the exchange energy (in the non-relativistic approxi-
mation), the spin-dependent exchange functional can be decomposed as

Ex[n↑, n↓] = Ex[n↑, 0] + Ex[0, n↓]. (S.6)

Applying this equation with n↑ = n↓ = n/2 gives

Ex[n/2, n/2] = Ex[n/2, 0] + Ex[0, n/2] = 2Ex[n/2, 0] = 2Ex[0, n/2], (S.7)

where it has been used that the functional is symmetric in its two arguments. Now, since Ex[n/2, n/2] =
Ex[n] where Ex[n] is the spin-independent exchange functional, we thus have

2Ex[n/2, 0] = 2Ex[0, n/2] = Ex[n], (S.8)

or, equivalently,

Ex[n, 0] = Ex[0, n] =
1

2
Ex[2n]. (S.9)

Since this is true for any density n, it can be applied with arbitrary spin-resolved densities n↑ and n↓,
leading to the spin-scaling relation

Ex[n↑, n↓] =
1

2
(Ex[2n↑] + Ex[2n↓]) . (S.10)

Exercise 6

Using Eqs. (2.3) and (2.4), we can write the exchange-correlation hole as

nxc(r1, r2) =
n2(r1, r2)

n(r1)
− n(r2), (S.11)

which, after integrating over r2, leads to

∫

nxc(r1, r2)dr2 =

∫

n2(r1, r2)dr2
n(r1)

−
∫

n(r2)dr2 =
(N − 1)n(r1)

n(r1)
−N = −1, (S.12)

where the relation
∫

n2(r1, r2)dr2 = (N − 1)n(r1) has been used, stemming directly from the definition
of n2(r1, r2) in Eq. (2.1).
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Exercise 7

We start from the definition of the exchange energy per particle of Eq. (2.14) and separate the domain
of integration over r2 into two subdomains

εx[n](r1) =
1

2

∫

nx(r1, r2)

|r1 − r2|
dr2

=
1

2

∫

Ω(r1)

nx(r1, r2)

|r1 − r2|
dr2 +

1

2

∫

Ω̄(r1)

nx(r1, r2)

|r1 − r2|
dr2, (S.13)

where Ω(r1) is the ball centered at 0 of radius r1 and Ω̄(r1) is the complement subdomain. In the first
subdomain Ω(r1), we have r2 < r1 so we can make a convergent multipole expansion of the Coulomb
interaction 1/|r1 − r2| around r2 = 0

1

2

∫

Ω(r1)

nx(r1, r2)

|r1 − r2|
dr2 =

1

2

∫

Ω(r1)

nx(r1, r2)

(

1

r1
+

r1 · r2
r31

+ · · ·
)

dr2

=
1

2r1

∫

Ω(r1)

nx(r1, r2)dr2 +
r1

2r31
·
∫

Ω(r1)

nx(r1, r2)r2dr2 + · · ·

∼
r1→+∞

1

2r1

∫

nx(r1, r2)dr2 = − 1

2r1
, (S.14)

where we have used the sum rule on the exchange hole [Eq. (2.10)] and the fact that all the moments
of the exchange hole exist for finite systems. As regards now the second contribution to the integral in
Eq. (S.13), since for finite systems the exchange hole decays exponentially, nx(r1, r2) ∝

|r1−r2|→0
e−α|r1−r2|,

this remaining contribution vanishes exponentially for r1 → +∞

1

2

∫

Ω̄(r1)

nx(r1, r2)

|r1 − r2|
dr2 =

r1→+∞
O(e−αr1). (S.15)

This thus proves that

εx[n](r1) ∼
r→+∞

− 1

2r1
. (S.16)

Exercise 8

We search the minimizing ensemble density matrices in the form

Γ̂ = (1− f)
∑

n

wN−1
n |ΨN−1

n 〉〈ΨN−1
n |+ f

∑

m

wN
m|ΨN

m〉〈ΨN
m|, (S.17)

where {ΨN−1
n } and {ΨN

m} are complete orthonormal basis of fixed eigenstates of the (N − 1)- and N -
electron systems, respectively, and wN−1

n and wN
m are weights to be optimized with the constraints

0 ≤ wN−1
n ≤ 1 and

∑

n w
N−1
n = 1, and similarly for wN

m. The energy corresponding to the ensemble
density matrix of Eq. (S.17) is

EN−1+f = Tr
[

Γ̂Ĥ
]

= (1− f)
∑

n

wN−1
n Tr

[

|ΨN−1
n 〉〈ΨN−1

n |Ĥ
]

+ f
∑

m

wN
mTr

[

|ΨN
m〉〈ΨN

m|Ĥ
]

= (1− f)
∑

n,n′

wN−1
n 〈ΨN−1

n′ |ΨN−1
n 〉〈ΨN−1

n |Ĥ|ΨN−1
n′ 〉+ f

∑

m,m′

wN
m〈ΨN

m′ |ΨN
m〉〈ΨN

m|Ĥ|ΨN
m′〉

= (1− f)
∑

n

wN−1
n 〈ΨN−1

n |Ĥ|ΨN−1
n 〉+ f

∑

m

wN
m〈ΨN

m|Ĥ|ΨN
m〉

= (1− f)
∑

n

wN−1
n EN−1

n + f
∑

m

wN
mE

N
m , (S.18)
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where EN−1
n = 〈ΨN−1

n |Ĥ|ΨN−1
n 〉 and EN

m = 〈ΨN
m|Ĥ|ΨN

m〉 are the corresponding eigenenergies for the
(N − 1)- and N -electron systems, respectively. Clearly, the minimum of EN−1+f in Eq. (S.18) is reached
when only the ground-state energies EN−1

0 and EN
0 of the (N − 1)- and N -electron systems remain in

the sums, i.e. for the weights wN−1
0 = 1 and wN−1

n>0 = 0, and wN
0 = 1 and wN

m>0 = 0. The minimizing
ensemble density matrix is thus indeed given by Eq. (2.32) and the corresponding ground-state energy
by Eq. (2.33).

Exercise 9

In the energy expression of Eq. (2.42), the orbitals {φj} are optimized in the presence of the orbital
occupation numbers {ni}. Therefore, the derivative of the energy with respect to ni contains two contri-
butions, a term corresponding to the explicit dependence on ni at fixed orbitals {φj} and a term coming
from the implicit dependence on ni via the orbitals {φj},

∂E

∂ni
=

(

∂E

∂ni

)

{φj}

+





N
∑

j=1

∫

δE

δφ∗j (r)

∂φ∗j (r)

∂ni
dr+ c.c.



 . (S.19)

The first term gives
(

∂E

∂ni

)

{φj}

=

∫

φ∗i (r)

(

−1

2
∇2 + vne(r)

)

φi(r)dr+

(

∂EHxc[n]

∂ni

)

{φj}

=

∫

φ∗i (r)

(

−1

2
∇2 + vne(r)

)

φi(r)dr+

∫

δEHxc[n]

δn(r)

(

∂n(r)

∂ni

)

{φj}

dr

=

∫

φ∗i (r)

(

−1

2
∇2 + vne(r) + vHxc(r)

)

φi(r)dr

= εi, (S.20)

where the expression of the density in terms of ni in Eq. (2.43) has been used, and εi is the orbital energy
introduced in Eq. (2.44). It can be shown that the second term in Eq. (S.19) vanishes

N
∑

j=1

∫

δE

δφ∗j (r)

∂φ∗j (r)

∂ni
dr+ c.c. =

N
∑

j=1

∫

[

nj

(

−1

2
∇2 + vne(r)

)

φj(r) +
δEHxc[n]

δφ∗j (r)

]

∂φ∗j (r)

∂ni
dr+ c.c.

=

N
∑

j=1

∫
[

nj

(

−1

2
∇2 + vne(r) + vHxc(r)

)

φj(r)

]

∂φ∗j (r)

∂ni
dr+ c.c.

=

N
∑

j=1

∫

njεjφj(r)
∂φ∗j (r)

∂ni
dr+ c.c.

=

N
∑

j=1

njεj
∂

∂ni

∫

|φj(r)|2dr = 0, (S.21)

since the orbitals are normalized,
∫

|φj(r)|2dr = 1. This proves Janak’s theorem [Eq. (2.47)].

Exercise 10

For large r, the KS potential vNs (r) ∼
r→+∞

vNs (∞) + (Q − 1)/r has spherical symmetry, and the KS

equations (2.44) for the asymptotic orbitals φNi,asymp(r) can thus be written as

−1

2

(

d2φNi,asymp(r)

dr2
+

2

r

dφNi,asymp(r)

dr
− ℓ(ℓ+ 1)

r2
φNi,asymp(r)

)

+

(

vNs (∞) +
Q− 1

r

)

φNi,asymp(r)

= εNi φ
N
i,asymp(r), (S.22)

where ℓ is the angular momentum. For r → +∞, the terms in 1/r or 1/r2 are negligible, so it remains

−1

2

d2φNi,asymp(r)

dr2
+ vNs (∞)φNi,asymp(r) = εNi φ

N
i,asymp(r), (S.23)
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which has the general solutions

φNi,asymp(r) = c1e
−
√

−2(εN
i
−vN

s (∞)) r + c2e
+
√

−2(εN
i
−vN

s (∞)) r, (S.24)

for bound states, i.e. εNi < vNs (∞). Since the second term on the right-hand-side of Eq. (S.24) diverges
for r → +∞, we must have c2 = 0 and therefore the asymptotic behavior of the KS orbitals is

φNi (r) ∼
r→+∞

e−
√

−2(εN
i
−vN

s (∞)) r. (S.25)

Exercise 11

By making the indicated replacements in Eq. (3.3), we arrive at

Eunif
x =

1

(2π)6

∫

ΩkF

dk1

∫

ΩkF

dk2

∫∫

1

|r1 − r2|
eı (k1−k2)·(r2−r1)dr1dr2, (S.26)

where the spatial integrations are on a box of volume V → ∞. Performing the change of variables
(r1, r2) → (r1, r12 = r2 − r1), we get

Eunif
x =

1

(2π)6

∫

ΩkF

dk1

∫

ΩkF

dk2

∫∫

1

|r12|
eı (k1−k2)·r12dr1dr12

= − V

(2π)6

∫

ΩkF

dk1

∫

ΩkF

dk2
4π

|k1 − k2|2
, (S.27)

where it was used that the integration over r12 gives the Fourier transform of the Coulomb interaction
∫

(1/|r12|)eı (k1−k2)·r12dr12 = 4π/|k1 − k2|2 and the integration over r1 gives the volume of the box
∫

dr1 = V . We can rewrite the integrals over k1 and k2 in spherical coordinates choosing as the polar
angle θ of k2 the angle between k1 and k2

Eunif
x = − V

(2π)6

∫ kF

0

dk14πk
2
1

∫ kF

0

dk22πk
2
2

∫ π

0

dθ sin θ
4π

k21 + k22 − 2k1k2 cos θ
. (S.28)

The integral over θ is easy to calculate

∫ π

0

dθ sin θ
4π

k21 + k22 − 2k1k2 cos θ
=

∫ 1

−1

dx
4π

k21 + k22 − 2k1k2x

=
−2π

k1k2

[

ln
(

(k1 − k2)
2
)

− ln
(

(k1 + k2)
2
)]

, (S.29)

and we are left with

Eunif
x =

2V

(2π)3

∫ kF

0

dk1

∫ kF

0

dk2 k1k2
[

ln
(

(k1 − k2)
2
)

− ln
(

(k1 + k2)
2
)]

=
2V k4F
(2π)3

∫ 1

0

dx1

∫ 1

0

dx2 x1x2
[

ln
(

(x1 − x2)
2
)

− ln
(

(x1 + x2)
2
)]

, (S.30)

where we have introduced x1 = k1/kF and x2 = k2/kF. It can be shown that the last double integral
over x1 and x2 equals −1, so we get

Eunif
x = −2V k4F

(2π)3
. (S.31)

We finally obtain the exchange energy per particle

εunifx =
Eunif

x

N
= − 2k4F

(2π)3n
= cxn

1/3, (S.32)

where the definition of kF = (3π2n)1/3 was used and the constant cx = −(3/4)(3/π)1/3 was introduced.
For an alternative way of calculating the integral in Eq. (S.27) see Fetter and Walecka, page 28 [97].
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Exercise 12

The LDA exchange energy functional is

ELDA
x [n] =

∫

n(r)εunifx (n(r))dr =

∫

f(n(r))dr, (S.33)

where f(n) = cxn
4/3. The variation of ELDA

x [n] due to a variation of the density can be written as

δELDA
x [n] =

∫

δf(n(r))dr =

∫
(

df(n)

dn

)

n=n(r)

δn(r)dr, (S.34)

which, according to Eq. (B.1), means that the functional derivative is

vLDA
x (r) =

δELDA
x [n]

δn(r)
=

(

df(n)

dn

)

n=n(r)

=
4

3
cxn(r)

1/3. (S.35)

Since the density n(r) decays exponentially for r → +∞ [Eq. (2.50)], the LDA exchange potential vLDA
x (r)

also decays exponentially for r → +∞, i.e. much too fast in comparison to the asymptotic behavior of
the exact exchange potential vx(r) ∼

r→+∞
−1/r.

Exercise 13

The Wigner correlation energy functional can be written as

EW
c [n] =

∫

f(n(r))dr, (S.36)

with f(n) = cn/(d+kn−1/3) where k = (3/(4π))1/3. Similarly to Exercise 12, the corresponding potential
is calculated as

vWc (r) =
δEW

c [n]

δn(r)
=

(

df(n)

dn

)

n=n(r)

=
c(d+ kn(r)−1/3)− cn(r)(−kn(r)−4/3/3)

(d+ kn(r)−1/3)2

=
cd+ (4/3)ckn(r)−1/3

(d+ kn(r)−1/3)2
. (S.37)

Exercise 14

The derivation of the potential of a GGA functional is just a 3D generalization of the 1D case of Eqs.(B.10)-
(B.13). The variation of EGGA

xc [n] induced by a variation of the density δn(r) is

δEGGA
xc [n] =

∫

δf(n(r),∇n(r))dr =

∫
[

∂f(n(r),∇n(r))
∂n

δn(r) +
∂f(n(r),∇n(r))

∂∇n · δ∇n(r)
]

dr, (S.38)

where the notation ∂f/∂∇n means the vector containing the derivatives of f with respect to the different
components of ∇n. Using δ∇n(r) = ∇δn(r) (since ∇ is a linear operator) and integrating by parts the
second term in Eq. (S.38)

δEGGA
xc [n] =

∫
[

∂f(n(r),∇n(r))
∂n

δn(r)−∇ · ∂f(n(r),∇n(r))
∂∇n δn(r)

]

dr, (S.39)

where we have used that δn(r) mush vanish at infinity so that the boundary term of the integration by
parts vanishes. Using the definition of a functional derivative, the potential associated with EGGA

xc [n] is
thus

vGGA
xc (r) =

δEGGA
xc [n]

δn(r)
=
∂f

∂n
(n(r),∇n(r))−∇ · ∂f

∂∇n (n(r),∇n(r)). (S.40)
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The contribution of vGGA
xc (r) to the KS Fock matrix [Eq. (1.49)] can then be expressed as

V GGA
xc,µν =

∫

χ∗
µ(r)v

GGA
xc (r)χν(r)dr

=

∫

χ∗
µ(r)

[

∂f

∂n
(n(r),∇n(r))−∇ · ∂f

∂∇n (n(r),∇n(r))
]

χν(r)dr

=

∫

∂f

∂n
(n(r),∇n(r))χ∗

µ(r)χν(r)dr+

∫

∂f

∂∇n (n(r),∇n(r)) · ∇
(

χ∗
µ(r)χν(r)

)

dr, (S.41)

where an integration by parts has been performed in the second term. Note that, since in practice f
depends on (∇n)2, the derivative ∂f/∂∇n is calculated as

∂f

∂∇n =
∂f

∂(∇n)2
d(∇n)2
d∇n = 2

∂f

∂(∇n)2∇n. (S.42)

Exercise 15

For a one-electron system, there is only one occupied orbital, which can be explicitly written in terms
of the density, φ(r) =

√

n(r), up to a unimportant phase factor. It is then immediate to check that the
kinetic energy density of such a system is the von Weizsäcker kinetic energy density:

τ1-elec(r) =
1

2
|∇φ(r)|2 =

1

2

(

∇
√

n(r)
)2

=
1

2

(

∇n(r)
2
√

n(r)

)2

=
|∇n(r)|2
8n(r)

= τW(r). (S.43)

Note that, for a two-electron closed-shell system, there is also only one occupied KS spatial orbital,
φ(r) =

√

n(r)/2, and it is easy to show that the non-interacting kinetic energy density is again the von
Weizsäcker kinetic energy density.

Exercise 16

The variation of the HF exchange energy [Eq. (3.18)] due to a variation of φ∗iσ(r) is

δEHF
x = −1

2

Nσ
∑

j=1

∫∫

δφ∗iσ(r1)φjσ(r1)φ
∗
jσ(r2)φiσ(r2)

|r1 − r2|
dr1dr2

−1

2

Nσ
∑

j=1

∫∫

φ∗jσ(r1)φiσ(r1)δφ
∗
iσ(r2)φjσ(r2)

|r1 − r2|
dr1dr2

= −
Nσ
∑

j=1

∫∫

δφ∗iσ(r1)φjσ(r1)φ
∗
jσ(r2)φiσ(r2)

|r1 − r2|
dr1dr2, (S.44)

and the functional derivative is thus

δEHF
x

δφ∗iσ(r1)
= −

Nσ
∑

j=1

∫

φjσ(r1)φ
∗
jσ(r2)φiσ(r2)

|r1 − r2|
dr2 =

∫

vHF
x,σ(r1, r2)φiσ(r2)dr2, (S.45)

where vHF
x,σ(r1, r2) is the nonlocal HF exchange potential

vHF
x,σ(r1, r2) = −

Nσ
∑

j=1

φjσ(r1)φ
∗
jσ(r2)

|r1 − r2|
. (S.46)

Alternatively, the functional derivative of Eq. (S.45) can be reformulated as δEHF
x /δφ∗iσ(r1) = vHF

x,iσ(r1)φiσ(r1)

where vHF
x,iσ(r) is a local HF exchange potential depending on each orbital it acts on

vHF
x,iσ(r1) =

1

φiσ(r1)

∫

vHF
x,σ(r1, r2)φiσ(r2)dr2. (S.47)
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Exercise 17

The error function is written as erf(x) = (2/
√
π)F (x) with F (x) =

∫ x

0
e−t2dt. Its Taylor expansion for

x→ 0 is

erf(x) =
2√
π
(F (0) + F ′(0)x+ · · · ) . (S.48)

We have F (0) = 0, and since F ′(x) = e−x2

, we have F ′(0) = 1, leading to erf(x) ∼
x→0

(2/
√
π)x. The limit

x→ +∞ is easily obtained by using the Gaussian integral
∫ +∞

0
e−t2dt =

√
π/2, leading to erf(x) −−−−−→

x→+∞

1.

Exercise 18

According to standard first-order perturbation theory, if a perturbation vs(r) → vs(r) + δvs(r) is applied
on the KS system, the first-order variation of the orbital φiσ(r

′) (assumed to be nondegenerate) is

δφiσ(r
′) = −

M
∑

p=1
p 6=i

∫

φ∗pσ(r)δvs(r)φiσ(r)dr

εpσ − εiσ
φpσ(r

′), (S.49)

where the sum is over all spatial orbitals p different from orbital i but of the same spin. The functional
derivative of φiσ(r

′) with respect to vs(r) is thus

δφiσ(r
′)

δvs(r)
= −

M
∑

p=1
p 6=i

φ∗pσ(r)φiσ(r)

εpσ − εiσ
φpσ(r

′). (S.50)

This result can be used to calculate the expression of χ0(r
′, r)

χ0(r
′, r) =

δn(r′)

δvs(r)
=

∑

σ=↑,↓

Nσ
∑

i=1

[

φ∗iσ(r
′)
δφiσ(r

′)

δvs(r)
+ c.c.

]

= −
∑

σ=↑,↓

Nσ
∑

i=1

M
∑

p=1
p 6=i

[

φ∗iσ(r
′)
φ∗pσ(r)φiσ(r)

εpσ − εiσ
φpσ(r

′) + c.c.

]

. (S.51)

The last sum can be simplified by decomposing it as
∑Nσ

i=1

∑M
p=1,p 6=i =

∑Nσ

i=1

∑Nσ

p=1,p 6=i +
∑Nσ

i=1

∑M
a=Nσ+1

and realizing that the double sum
∑Nσ

i=1

∑Nσ

p=1,p 6=i is zero because the summand inside the square bracket
is antisymmetric with respect to the exchange of i and p. We thus arrive at the expected expression

χ0(r
′, r) = −

∑

σ=↑,↓

Nσ
∑

i=1

M
∑

a=Nσ+1

φ∗iσ(r
′)φ∗aσ(r)φiσ(r)φaσ(r

′)

εaσ − εiσ
+ c.c. . (S.52)

As regards the functional derivative of Ex with respect to vs(r), it is obtained by using chain rule with
the orbitals and using Eqs. (S.45), (S.46), and (S.50)

δEx

δvs(r)
=

∑

σ=↑,↓

Nσ
∑

i=1

∫

δEx

δφ∗iσ(r1)

δφ∗iσ(r1)

δvs(r)
dr1 + c.c.

= −
∑

σ=↑,↓

Nσ
∑

i=1

M
∑

p=1
p 6=i

∫∫

vHF
x,σ(r1, r2)φiσ(r2)

φpσ(r)φ
∗
iσ(r)

εpσ − εiσ
φ∗pσ(r1)dr1dr2 + c.c.

=
∑

σ=↑,↓

Nσ
∑

i=1

Nσ
∑

j=1

M
∑

p=1
p 6=i

[

(φpσφjσ|φjσφiσ)
φpσ(r)φ

∗
iσ(r)

εpσ − εiσ
+ c.c.

]

=
∑

σ=↑,↓

Nσ
∑

i=1

Nσ
∑

j=1

M
∑

a=Nσ+1

(φaσφjσ|φjσφiσ)
φaσ(r)φ

∗
iσ(r)

εaσ − εiσ
+ c.c. , (S.53)
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where again it was used that
∑Nσ

i=1

∑M
p=1,p 6=i =

∑Nσ

i=1

∑Nσ

p=1,p 6=i +
∑Nσ

i=1

∑M
a=Nσ+1 =

∑Nσ

i=1

∑M
a=Nσ+1 since

the summand inside the square bracket is antisymmetric with respect to the exchange of i and p.

Exercise 19

In the GL2 correlation energy expression of Eq. (4.11), only double and single excitations contribute

EGL2
c = −

N
∑

i=1

N
∑

j=i+1

2M
∑

a=N+1

2M
∑

b=a+1

|〈Φ|Ŵee − V̂Hx|Φab
ij 〉|2

εa + εb − εi − εj
−

N
∑

i=1

2M
∑

a=N+1

|〈Φ|Ŵee − V̂Hx|Φa
i 〉|2

εa − εi
. (S.54)

Applying the standard Slater’s rules, 〈Φ|Ŵee − V̂Hx|Φab
ij 〉 = 〈Φ|Ŵee|Φab

ij 〉 = 〈ij||ab〉, the first term gives
the MP2-like contribution

EMP2
c = −

N
∑

i=1

N
∑

j=i+1

2M
∑

a=N+1

2M
∑

b=a+1

|〈ψiψj ||ψaψb〉|2
εa + εb − εi − εj

= −1

4

N
∑

i=1

N
∑

j=1

2M
∑

a=N+1

2M
∑

b=N+1

|〈ψiψj ||ψaψb〉|2
εa + εb − εi − εj

. (S.55)

As regards the second term, using 〈Φ|Ŵee − V̂Hx|Φa
i 〉 =

∑N
j=1〈ψiψj ||ψaψj〉 − 〈ψi|V̂Hx|ψa〉 = 〈ψi|V̂ HF

Hx −
V̂Hx|ψa〉 = 〈ψi|V̂ HF

x − V̂x|ψa〉, we find the expected expression

ES
c = −

N
∑

i=1

2M
∑

a=N+1

|〈ψi|V̂ HF
x − V̂x|ψa〉|2
εa − εi

. (S.56)

Exercise 20

The linear-response function of Eq. (4.19) can be written as

iχλ(r1t1, r2t2) = θ(t1 − t2)〈Ψλ|eiĤλt1 n̂(r1)e
−iĤλt1eiĤ

λt2 n̂(r2)e
−iĤλt2 |Ψλ〉

+θ(t2 − t1)〈Ψλ|eiĤλt2 n̂(r2)e
−iĤλt2eiĤ

λt1 n̂(r1)e
−iĤλt1 |Ψλ〉

−〈Ψλ|n̂(r1)|Ψλ〉〈Ψλ|n̂(r2)|Ψλ〉, (S.57)

or, after introducing a complete set of orthornormal eigenstates of the Hamiltonian, Ĥλ|Ψλ
n〉 = Eλ

n |Ψλ
n〉

(with Ψλ
0 = Ψλ),

iχλ(r1t1, r2t2) = θ(t1 − t2)
∑

n

〈Ψλ|eiĤλt1 n̂(r1)e
−iĤλt1 |Ψλ

n〉〈Ψλ
n|eiĤ

λt2 n̂(r2)e
−iĤλt2 |Ψλ〉

+θ(t2 − t1)
∑

n

〈Ψλ|eiĤλt2 n̂(r2)e
−iĤλt2 |Ψλ

n〉〈Ψλ
n|eiĤ

λt1 n̂(r1)e
−iĤλt1 |Ψλ〉

−〈Ψλ|n̂(r1)|Ψλ〉〈Ψλ|n̂(r2)|Ψλ〉. (S.58)

After applying the Hamiltonian Ĥλ on its eigenstates, it is apparent that χλ(r1t1t1, r2t2) only depends
on τ = t1 − t2

iχλ(r1, r2; τ) = θ(τ)
∑

n

〈Ψλ|n̂(r1)|Ψλ
n〉〈Ψλ

n|n̂(r2)|Ψλ〉e−iωλ
nτ

+θ(−τ)
∑

n

〈Ψλ|n̂(r2)|Ψλ
n〉〈Ψλ

n|n̂(r1)|Ψλ〉eiωλ
nτ

−〈Ψλ|n̂(r1)|Ψλ〉〈Ψλ|n̂(r2)|Ψλ〉, (S.59)

where ωλ
n = Eλ

n − Eλ
0 are the excitation energies. Since the last term in Eq. (S.59) just corresponds to

the n = 0 contribution from the sums, we finally find

iχλ(r1, r2; τ) = θ(τ)
∑

n6=0

〈Ψλ|n̂(r1)|Ψλ
n〉〈Ψλ

n|n̂(r2)|Ψλ〉e−iωλ
nτ

+θ(−τ)
∑

n6=0

〈Ψλ|n̂(r2)|Ψλ
n〉〈Ψλ

n|n̂(r1)|Ψλ〉eiωλ
nτ . (S.60)
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Using the Fourier-transform formulas for the Heaviside step function, θ(τ) = −1/(2πi)
∫∞

−∞
dω e−iωτ/(ω+

i0+) and θ(τ) = 1/(2πi)
∫∞

−∞
dω e−iωτ/(ω − i0+), we can express iχλ(r1, r2; τ) as

iχλ(r1, r2; τ) = −
∫ ∞

−∞

dω

2πi

∑

n6=0

〈Ψλ|n̂(r1)|Ψλ
n〉〈Ψλ

n|n̂(r2)|Ψλ〉
ω + i0+

e−i(ω+ωλ
n)τ

+

∫ ∞

−∞

dω

2πi

∑

n6=0

〈Ψλ|n̂(r2)|Ψλ
n〉〈Ψλ

n|n̂(r1)|Ψλ〉
ω − i0−

e−i(ω−ωλ
n)τ ,

(S.61)

which, after making the substitutions ω → ω − ωλ
n and ω → ω + ωλ

n in the first and second integrals,
respectively, can be recast in the form

χλ(r1, r2; τ) =

∫ ∞

−∞

dω

2π
e−iωτ

∑

n6=0

〈Ψλ|n̂(r1)|Ψλ
n〉〈Ψλ

n|n̂(r2)|Ψλ〉
ω − ωλ

n + i0+
− 〈Ψλ|n̂(r2)|Ψλ

n〉〈Ψλ
n|n̂(r1)|Ψλ〉

ω + ωλ
n − i0−

,

(S.62)

meaning that the Fourier transform of χλ(r1, r2; τ) is

χλ(r1, r2;ω) =
∑

n6=0

〈Ψλ|n̂(r1)|Ψλ
n〉〈Ψλ

n|n̂(r2)|Ψλ〉
ω − ωλ

n + i0+
− 〈Ψλ|n̂(r2)|Ψλ

n〉〈Ψλ
n|n̂(r1)|Ψλ〉

ω + ωλ
n − i0−

. (S.63)

After extending the function χλ(r1, r2;ω) on the ω-complex plane by analytic continuation, and noting

that the integral of eiω0+χλ(r1, r2;ω) is zero on the infinite upper semi-circle C according to Jordan’s

lemma (since |χλ(r1, r2;ω)| goes to zero when |ω| → +∞), the integral of eiω0+χλ(r1, r2;ω) over the real
axis ]−∞,+∞[ is identical to the integral over the closed path γ =]−∞,+∞[ ∪ C

∫ ∞

−∞

dω

2πi
eiω0+χλ(r1, r2;ω) =

∮

γ

dω

2πi
eiω0+χλ(r1, r2;ω). (S.64)

Only the second term in Eq. (S.63) gives poles in the upper-half of the complex plane, ω = −ωλ
n + i0−,

enclosed by γ, therefore according to the residue theorem only their associated residues contribute to the
integral
∮

γ

dω

2πi
eiω0+χλ(r1, r2;ω) = −

∑

n6=0

〈Ψλ|n̂(r2)|Ψλ
n〉〈Ψλ

n|n̂(r1)|Ψλ〉

= −
[

∑

n

〈Ψλ|n̂(r2)|Ψλ
n〉〈Ψλ

n|n̂(r1)|Ψλ〉 − 〈Ψλ|n̂(r2)|Ψλ〉〈Ψλ|n̂(r1)|Ψλ〉
]

= −
[

〈Ψλ|n̂(r2)n̂(r1)|Ψλ〉 − 〈Ψλ|n̂(r2)|Ψλ〉〈Ψλ|n̂(r1)|Ψλ〉
]

. (S.65)

We thus correctly recover the fluctuation-dissipation theorem of Eq. (4.23)

−
∫ ∞

−∞

dω

2πi
eiω0+ [χλ(r1, r2;ω)− χ0(r1, r2;ω)] = 〈Ψλ|n̂(r2)n̂(r1)|Ψλ〉 − 〈Φ|n̂(r2)n̂(r1)|Φ〉

= nλ2,c(r1, r2). (S.66)

Exercise 21

The variation of F [f ] induced by a variation of f(x) is

δF [f ] =

∫
[

∂h

∂f(x)
δf(x) +

∂h

∂f ′(x)
δf ′(x) +

∂h

∂f ′′(x)
δf ′′(x) + · · ·+ ∂h

∂f (n)(x)
δf (n)(x)

]

dx

=

∫
[

∂h

∂f(x)
− d

dx

(

∂h

∂f ′(x)

)

+
d2

dx2

(

∂h

∂f ′′(x)

)

+ · · ·+ (−1)n
dn

dxn

(

∂h

∂f (n)(x)

)]

δf(x)dx,

(S.67)
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where, in the nth-order term, it was used that δf (n)(x) = [δf(x)](n) (since differentiation is a linear
operation) and n consecutive integrations by parts were performed (and assuming that all boundary
terms vanish). The functional derivative is thus

δF [f ]

δf(x)
=

∂h

∂f(x)
− d

dx

(

∂h

∂f ′(x)

)

+
d2

dx2

(

∂h

∂f ′′(x)

)

+ · · ·+ (−1)n
dn

dxn

(

∂h

∂f (n)(x)

)

. (S.68)
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